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1. Introduction. Consider a linear differen-

tial equation :

(1.1) d

%Y = M(x, t)Y,
where M (x, t) is an m X m matrix whose en-
tries are rational functions of x, and depend on ¢
€ U < C’ analytically. We call the following
problem as extended Fuchs problem. “Give a con-
dition under which there exist a solution whose
monodromy groups and Stokes multipliers are in-
dependent of ¢”.

When the differential equation (1.1) is of the
form:

iY= Ax, )Y,

dx
A, b =55
j=1k=0 ( — aj) +

the Fuchs problem was studied by Jimbo-Miwa-
Ueno [4 and 6]. They show that a solution of this
problem is given by a nonlinear differential equa-
tion with the Painlevé property. This nonlinear
differential equation is called the monodromy
preserving deformation equation, called in short
MPD equation.

It is known by [7, 8, and 9] that the Garnier
system and the Painlevé equations are special
cases of MPD equation, and that each of these
equations is described as a polynomial Hamilto-
nian systems. By the use of these results, the
contiguity relations of Painlevé equations are
given by [10, 11, 12, and 13].

In this paper, we consider the Fuchs prob-
lem for the linear differential equation:

d._ 1 @,
(1.2) YEY: Ed(x, Y, d,t): = Eosﬂkx ,

Voo
k-1
2k,
k=1

with following assumptions
(i) &, are 2 X2 matrices,
(ii) the eigenvalues of &, are distinct up to
additive integers,
(iii) the eigenvalues of &,,, are distinct.
We show in what follows that the MPD equation

is written as a Hamiltonian system. Notice that if
g = 1, the MPD equation is equivalent to the
fourth Painlevé equation, and that if g = 2, the
MPD equation is equivalent to the nonlinear dif-
ferential equation given in [5].

2. Holonomic deformation. Theorem 2.1.
Changing suitably the variables, we can transform
(1.2) to the linear differential equation :

d 1ozl _
(2.1) a—x‘Y—-zkgoﬂkY,
which satisfies the following conditions :
- 00 -
= [0 0] - ad,=o

g+l _ _
. degZ&ﬂ,@k < g+ 1, ¢ The(1,1) component of A, is 0.
k=0

Theorem 2.2. The differential equation (2.1)
1S equivalent to the following equation :
2

d d
(2.2) ;:—c;y + py(z, t)%y + p(x, Dy=0

1— g _
px, ) = "0 — Tttt — o
x k=1
x4
1 _
p.(x, t) = — ;Zhg+1_k'xk S
g Aplly
+ ,Ex(x — A’
where b, (k =1,..., g) are
1

g
hy=(— 1)’ 151/1'(/1,) [/210'1,;'-1/«‘12 - ‘71,1'—1('110+l +

g
E:ltk'{zk + Ky T Icoozlgo.l,i—l]

R = PR j-1-k__ i
I=1k§0( b Ol’kxl A/(/ll)y

g
AQY = 1T A, — A,
=1
J"#k_
1 d ¢
o, =75 A+ 42 .
’ ]' dx! i=1 =0
iFk
The number of accessory parameters (2.2) is
2g. (2.2) has singular points at x = 0 and x =
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oo . The Poincaré rank at these singular points
are 0 and g + 1, respectively. Therefore (2.2) is
called L(1, g + 2; g) type.

Remark 1. By the assumptions (ii) and (iii),
Ko and K, are not integer.
Remark 2. (2.2) has non-logarithmic singu-

lar points at x= A, (k=1,..
singularity of (2.1).

Remark 3. Let f;(x) denotes the (i, )
component of matrix & (x, ¢). Then A, are zeros
of fi,(x), and g, are given as follows :

te = fii(A) /2,

As for the holonomic deformation of linear
equation’s the following result is known:

Proposition 2.1 ([4,7]). A linear differential
equation

(2.3)

., g) besides the

YT, t)a%y Tz, )y =0,
has a fundamental system of solutions whose monod-
romy is independent of t € U < C°, if and only if
there exist rational functions of x, A; (z, t), and
B;(x,t) (j=1,...,9) such that the extended
system of 2the differential equations

0 0
(2.4) Ey + p, (z, t)-a—gy +p,(x, )y =0,

(2.5)
i—A( -2y + By, Dy (j=1,2 )
at]y_ jx’ axy i\ y\uy=14,4,...,9),

is completely integrable.

In the case of equation (2.2), by examing a
local behavior of solutions, we can determine the
function A; and B; as follows:

Theorem 2.3. The rational functions A; and
B;(j=1,...,9 are

1 g _lj—l k i j—k
A ==11 (x — AD 22(=1 o;T,_x ",
J =1 k=0i=0 ~

_ 1y 04 1/ ¢ 1 0K

where 0; is the i-th elementary symmetric function

of Ay ...y Ay and T, K’, are given as follows :
T, 1 !
T, T, t, 1
I, T, T, =\t t 1 '
T, T,, - T, Ty A A A |
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K 1 !

K, 2

K, 1 ! rh
t, 1 hy
A | :
L,

t, ot 1 h,

In general, under the assumption that there
exist rational functions A; (z, t) and B; (r,
t) which satisfies the condition of Theorem 2.1
and (2.3) is said to admit the holonomic deforma-
tion.

Considering the compatibility condition of
(2.4) and (2.5), we obtain the following theorem.

Main Theorem 1. The linear differential
equation (2.2) admits a holonomic deformation, if
and only if ; and p; satisfy the following Hamilto-
nian system

oA, 0K, op, 0K, . . _
(26) atj - aﬂi, at] - axt (l,]_ 1,..., g),

where the Hamiltonians K ; are the rational func-
tions of A, and y, which are given in Theorem 2.2.
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