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1. Introduction. Let H(D) be the space of
analytic functions on the unit disk D. Every holo-
morphic self-map o:D --+ D induces a linear
composition operator C from H(D) into itself as
follows: Cf-- f q), whenever f H(D). In this
paper we consider composition operators from
the Bloch space to the spaces of analytic Besov
functions B, 1 < p < oo.

Recall the definitions of the Bloch space N
and the analytic Besov spaces Bp (see e.g. [91).

The function f is called a Bloch function if it

is analytic in D and

f II- sup(1 -Iz I,) f’(z) <
zD

This defines a sexni-norm. The Bloch functions
form a Banach space with the norm IIll-
<o) / f II.

The anabytic Besov functions are defined as
follows

B, [f H(D) f liB,

(ff ((1- zl a) f’(z) I)*’cLa(z))-}
< co},

dA (z)
where dR(z) is the hyperbolic

(1 --Izlb
1

area measure on D and dA(z) - dx dy.

The analytic Besov functions form a Banach
space B., 1 < p < co, with the norm Ilfll-
f(o) -t- f I1,

Let B be the family of holomorphic self-
maps p of the unit disk D into itself. By the
Schwarz-Pick lemma sup (1 z [2) ep.(z) <-- 1

for any p B, where p (z)is the hyperbolic
derivative

(z)
-[<z> ["

We say that p Bo if
lim (1 z I") P* (z) 0.

Definition. For I < p < co the hyperbolic
h

analytic Besov class B is defined, to be the family

of all functions q) B such that

(ff ((1 z 12) 0" (z))Pd/ ())- < co.
D

We can assume that B B. However
MObius transforms of D are not p-hyperbolic Be-
sov functions for 1 < p <

a-- z
Let Ta (z) 1 dz

a D, and (/9a (g)

(T(z)).
hFor every p B and every a D func-

tions Ta p(z) and po Ta(z) belong to the class
Bp.

We give some examples of functions which

are in B or are not in B.
1. Let Sa {Z--z+iy:]Zla/lyla<l},

0 < ce < 1, and p. be a conformal mapping of D
into S., then q9 Bzh. If ce < 1 then p.(z) B2.

2. Let q9 be a bounded holomorphic func-
tion in O with I1 <- < , if is continuous
in/ and p(e) A., 0 < ce <_ 1, then
(1 --Iz 12) lqg’(z)l 0((1 -Iz12) ") as lzl --- 1,
and also
(1-- Izl 2)p*(z) O((1-- Izl )")

by the Hardy-Littlewood theorem ([3], Theorem
1

5.1). Thus p B for p > -. See also [7].

2. Composition operators on the Bloch space.
Our main results are the following

Theorem 1. Let q) be a holomorphic mapping

of D into itself and 1 < p < co. C is a Bloch-
hto-B composition operator if and only if q) Bp.

hTheorem 2. If q) B, 1 < p < co, then q)

induces a compact composition operator C on 3 into

B.
Proof of Theorem 1. Let p be any function
hof B, 1 < p < co, and f be any Bloch function.

Then we obtain

ff I) g"f (P [l,, (1 z (z) ’ d/2 (z)
D

ff (1 z 12) p f’ (P (z) I’ ’ (z) I’d <z)
D
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D

This proves the "if" part.
To prove the converse we use a trick in [2].

Pick up any Bloch functions f and g such that
1]f’(z)]+]g’(z)] (existence of such

functions was proved in [5]). Then for every p > 1

2-
f’(z) [ +lg’(z)I

Proof of Theorem 2. Let b() be the unit
ball in and {fn} b(). Then {fn} is a normal
family in D and therefore there is a subsequence

{fn} converging uniformly on every compact
subset of D to f b(). Then the sequence {g},
g(z) fn(Z) f(z), converges uniformly to 0
on every compact subset of D. Thus for compact-
ness of operator C’B it is enough to
prove that if {g) b() and {g) converges to
0 uniformly on every compact subset of D then

Let {g} b() and {g} converge to 0 uni-
formly on every compact subset of D. Since

hB for every e > 0 there exists such a com-
pact K D that

ff(1 z (z) (z) <)d
DK

and there exists a number N such that

sup (1 -Iw Ib [g(w) < for any k
w(K)

N. Then

ff Ib
D

K

( -I(z)Ib leg (z)

) *+ ff( z ( (z))
DK

(1 -I(z)I) gg (z)Id(z)

ff [) *s (1-lz ( (z))d(z)
K

DK

Corollary. Let q be any holomorphic self-map
h

of the unit disk D. Then q B, 1 < p < , if
and only if

ffffl i
Ii-z

dA(z) dA(w)
for any Bloch function f

h
Proof Let 1 <p < oo. If q B then by

Theorem 1 for any f Y3 function f p B
and by Theorem 5.3.4 [9] we have (1).

Conversely, if (1) holds for every Bloch
function f then by Theorem 5.3.4 [9] function f
q belongs to B and by Theorem 1 function

hB.
3. Properties of hyperbolic Besov functions.

In this section we give some properties of hyper-
bolic Besov functions.

Denote by a(a, b) the hyperbolic distance
on D

1 II-al+la-bla(a, b) -lnll, al-la- b l’
a, b D.

Theorem 3. Let q be any holomorphic self-
hmap of the unit disk D. Then

if and only if

i1- z [4
dA(z)dA(w)

h hTheorem 4. Bp c Bq Bo for any 1 < p

Remark 1. The similar result to Theorem 3
for analytic Besov functions was proved by K.
Zhu ([9], Theorem 5.3.4).

Remark 2. Recently, R. Aulaskari and G.
Csordas defined the meromorphic (spherical) Be-

#
sov classes B, 1 < p < oo, (see [1]). Similar to
Theorem 1 we can show that if f is a normal

h
meromorphic function in D [4] and q B then

#f9Bt,.
Addendum. Prof. T. Gamelin informed the

author that Maria Tjani
obtained similar results to

[6] independently
Theorem 1 and

Theorem 2.
Prof. R. Aulaskari informed the author that

his student Ruhan Zhao [8] also obtained similar
results to Theorem 1 and Theorem 2. All these
proofs are different.
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