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The main purpose of this paper is to give a
simple proof of a result similar to the inverse
mapping theorem of Komatsu [1] under a weaker
condition than that of [1], including the infinite
dimensional case treated in Yamanaka [3].

In [1],[31 the majorant series method and the
Lagrange formula are used, and [3] uses a gener-

alization of the higher order chain rule of Faa’di
Bruno. Here neither the majorant series method
nor the higher order chain rule is utilized. Alter-
natively we prove and use a generalization of a

result in Rudin [2] and a variant of the Lagrange
formula (Theorem 3 below).

Let Mp, p= 0,1,2," be a sequence of
positive numbers with M 1. Let X, Y be
Banach spaces and U an open subset of X. A
map f U--’ Y is said to belong to the ultradiffe-
rentiable class {M} (or {M} (U, I0), if f
C(U, Y) in the sense of Frechet-differentiation
and if there are constants C and h such that

IIf ‘’)(x) <- Ch’M,, p 0,1,2,..., x U.
In [2], [3] the following condition is consi-

dered: There is a constant H such that
(1) N/’ <_HI/q if 1 <-p<- q,
where

Here we consider the condition that there is
a constant H such that the inequality

(2) II N, <-
=1

holds for positive integers k with =1 k n, n
1,2,...,j= 1,2,.-., n.

This condition follows from (1).
Example. For n 1,2,"’, let

m-- 0,1,.’.)M.
nvrtn("-l) (rt 2m

n!nn(’*+l)
(otherwise).

Then this sequence {M} satisfies (2) with H
1 but not the condition (1). In fact we have

,N1/(n-1) Nn/n m
sup..-1 / ;n 2 m_> 1) oo On
the other hand, if J=l k n and 1 _< k < n-
1, then

II gk,<-- kk’(k’+l’ {-I nk’(n-l’ < gn
i=1 i=1 i=1

If kr= n-- I for some r, then j= 2 and ks= 1
(s 4: r), hence II__1 Nk, Nn-x < Nn.
Thus (2) is strictly weaker than (1).

It is shown in [2] that the class {M} is
closed under division (in the one-dimensional

case) if M satisfies (1). Here we have the follow-
ing generalization of this.

Theorem 1. Assume (2). Let X, Y and Z be
Banach spaces and U an open subset of X. If T
belongs to the class {M)(U,L(Z, lO) and
T(a) :Z---* Y is bijective for a point a in U, then
the map x IT(x)] -1

belongs to the class
{Mp} (Uo, L(Y, Z)) for some open subset Uo of
U containing a.

Proof By assumption we have
Z <- he+M, k 0,1,2,.. ",

with some constant h. The open mapping theorem
implies that IT(a)] -1

belongs to L(Y, Z). There
exists an open set Uo containing a such that, for
x Uo, IT(x)]-1 coincides with

R(x) [T(a)]- ((T(a) T(x))[T(a)]-},
1=0

which belongs to L(Y, Z) and R(x)l[ <- C for
a constant C. By the boundedness of derivatives
of T and by the Leibniz rule, the series

R (u) R (x) E (T(x) T(u)) R (x)
1=0

may be differentiated with respect to u in a
neighborhood of x, term by term any number of
times, since the resulting series converge uni-
formly in the neighborhood of x. Putting u x
after differentiating this equality n-times by u,
we have

R (") (x) R (x) Z n! [- (x) R (x)
.= i=1/,

where denotes the summation with respect to
positive integers k with =1 k n. Thus (2)
implies

R("’(x) <- C Z Z Ch
= "=1 k!
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<_
j=l

hence

R ’(x) <-- (n-- 1) C,+,h.+i H"M,,
j--1 j 1

<_ CH"h"+(Ch + 1)’-XM..
Therefore R belongs to (Mp} (Uo, L(Y, Z)).

Now we assume that there is a constant H
such that

(3) II Nk,+ <HnNn+ if Eki=n, ki2 0,
i=1 i--1

n 1,2,’", j 1,2,"’, n.
This condition is equivalent to the condition that
Mp+x satisfies (2) since 1 <- H_ (k-t- 1) <- 2n.
(3) is strictly weaker than the condition
(4) ..pvl/(*-l) _< HNX/(q-x) if 2 _< p < q,
which is assumed in [1].
We have the following inverse mapping theorem.

Theorem 2. Assume (3). Let X, Y be
Banach spaces and U an open subset of X. Let f
belong to {Mp} (U, Y) and f’(a)" X---* Y be bi-
jective for a point a U. Then there exist open n.

sets UoC U, VoC Ysuch that a Uo, f(a)
Vo and f’Uo--* Vo is a C-diffeomorphism and
the inverse map f- of f belongs to {M} (Vo, X).

We know by the well-known inverse map-
ping theorem for C-maps that there exist open
sets Uo U and Vo c Ysuch that a Uo and f
Uo-- Vo is a C-diffeomorphism. Therefore it

only remains to estimate the derivatives of the
inverse map f-1 of f. In order to estimate them
we use a variant of the Lagrange formula:
Let Ri,j- 1,2, be in C(U,L(Y,X)),
where U is an open subset of X. We define Sn, n

0,1,..., recursively by
So(x) Ix X--* X (identity) and
S(x)- (S._,(x)R.(x))" (n > )

for x U. Here Sn_ belongs to C**(U,L(X,
Ln-(Y, X))) and accordingly Sn-x(x)Rn(x)
Ln(Y, X), where Ln(Y, X) denotes the set of all
bounded multi-n-linear maps from yn to X.

We can easily see that
(n) n

S(x) < A(k,’", k.) II R[’) (x)
i=1

(.) [21
where . denotes the summation with respect to
nonnegative integers k with .n__ k n and
A(kl,’" ", kn) are nonnegative integers with [31

i--1 --1

where t,’’ ", tn are independent (real-valued)
variables. Comparing the right-side of the last
equality with the polynomial

t n! ti=li
we get A(kx, ", kn) n! /(k! kn!) and
accordingly

(5) S (x)II nt H
i=1

If R R for all j, we write Sn[R] (x) S(x).
Theorem 3. Let f be a map as in Theorem

2. Put R(x) [f’(x)]-’ L(Y, X) and g
f-. Then
(6) g’ (y) S_[R] (x)R (x), n 2 1
(x g(y)).

Proo Since g’(y) [f’(x)] - R(x), (6)
holds for n 1. For every smooth map v, we
have

dv dv
R(x).dy dx

Thus (6) is verified immediately by induction on

Proof of Theorem 2. Applying Theorem 1
to T(x) f’(x), we obtain that R {M+I} (Uo,

kL(Y, X)), and thus R<k)(x) <- Ch Mk/x with
some constants C and h(k= 0,1,’’ "). (6) and
(5) yield

("’ IIR(k"(x)g("+" (y)II c z n
"i=1 k

(n) n Mk+C"+h"n H
= k

and hence (3) implies
(n) n

g("+X)(Y)II cn+xhnnnngn+l E H (ki + 1).
i=1

Since

i=l

we have g,n+l, (y) K C(8ChnMn+, therefore
g belongs to the class {M} (Vo, X).
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