
62 Proc. Japan Acad., 71, Ser. A (1995) [Vol.71(A),

Finding Singular Support of a Function from its Tomographic Data

By A. I. KATSEVICH *) and A. G. RAMM* *)

(Communicated by Kiyosi IT6, M. J. A., March 13, 1995)

Abstract: We develop three different approaches to the problem of finding discontinuity
surface S of a function f(a:) from its tomographic data: 1) pseudolocal tomography, introduced
by the authors, produces S and the jumps of f across S from pseudolocal tomographic data; 2)
local tomography, introduced in the literature and further generalized by one of the authors
produces S from local data. A method is proposed for finding jumps of f across S. This
method is based on the analysis of pseudodifferential operators acting on piecewise smooth
functions" and 3) geometric tomography, introduced by one of the authors and A. Zaslavsky,
produces S from S, a dual variety with respect to S, which happens to be the singular sup-
port of j2(0, p).

I. Introduction. Let f(:v) be a compactly pseudolocal tomographic data; 2) local tomogra-
supported piecewise-smooth function. For sim- phy (LT), introduced in [31] and [30] and further
plicity we assume that :v /{2, but the basic generalized in [17], produces S from local data,
ideas and results are valid in /n, n --> 2. Define but no methods for finding jumps of f across S

were given in the literature. We develop a new
the Radon transform f(O,p)"= .f(a:)6(p-- method for finding these jumps within the
9. a)da:, where 6 is the delta-function, 6 S1, framework of local tomography. Also, we give an
S is the unit sphere in /, 6/’v is the dot pro- approach to optimizing the LT formulas [22]; and
duct, p /. Here and everywhere below we use 3) geometric tomography, introduced in [24], pro-
the scalar variable 0, 0 <-- 0 < 2r, along with duces S from S, a dual variety with respect to S,
the vector variable 9 so that 6t (cos 0, sin 0). which happens to be the singular support of f(O,
The Radon transform has been studied in [2, 4, p).
14]. In many applications one is interested in A fast algorithm to recover S is given by
finding discontinuity surfaces of f(a:) given local tomography [31, 1]. This procedure is to
27(0, p). The traditional way to do it is to invert calculate (-- A)x/f From ellipticity of A it fol-
the Radon transform. This is called the standard lows [3] that (-- A)/f and f have the same sin-
tomography. The inversion formula is well gular support, and one can prove that calculation
known [14]. This formula requires integration of (-- A)X/2f at a point :v given 22(0, p) can be
with respect to 0 and p, and therefore is an ex- done using only the intergrals of f along straight
pensive operation. One is interested in finding a lines passing through the point a:. This results in
fast and less computationally expensive proce- an inversion formula which uses integration with
dure for finding discontinuity surfaces S of f respect to 0-variable only. Local tomography, as

We describe three different approaches to developed in [31] and [1], produces the image of
this problem: 1) pseudolocal tomography (PLT), the discontinuity surface S of f but it does not
introduced by the authors in [6] and further de- give the values of jumps of f across S. These
veloped in [13], produces the discontinuity sur- jumps are of practical importance in many ap-
faces S of f and jumps of f across S from plications.

In this announcement we present the follow-
*) Los Alamos National Laboratory, U. S.A. ing new results" 1) we introduce the concept of

**) Department of Mathematics, Kansas State Uni- pseudolocal tomography, construct a formula
versity, U. S.A. which allows one to calculate fast the discon-
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of f over the lines which intersect a disc of small
radius d > 0 centered at a point x. The PLT for-
mula also allows one to calculate values of jumps
of f across S; 2) we construct a family of local
tomography functions and prove that these func-
tions have the same wave fronts as f; in particu-
lar, they have the same singular supports as f.
We describe asymptotic behavior of the function
(Bf)(x) in a neighborhood of a point xo S (the
discontinuity of f), where B is a pseudodifferen-
tial operator (PDO) with a symbol satisfying
some natural conditions which are met in many
cases. Using this result, we obtain a formula
which allows one to compute values of jumps of f
across S within the framework of local tomogra-

phy" 3) we identify the set in the space
(9, p)which is in a one-to-one correspondence
with S, the singular support of f, and construct
the map that sends S onto S. This yields the
third efficient way to calculate S from tomog-
raphic data. A systematic study of the singular
support of f(0, p) and its relation to S is given
in [24-27].

In Section II the results are formulated. In
Section IIIa brief outline of some of the proofs is
given. Related papers are [6-11], [16], [17-22],
[24-28], and [29].

If. Basic results. 1. Pseudolocal tomography.
Let us assume for simplicity that f is a compact-
ly supported real-valued piecewise-continuous
function, supp f-- D c Re, and let S c D be the
discontinuity curve of f. We suppose that
S is a piecewise smooth oriented curve, S+ will
denote the part of D whihh is on the positive side
of S near S and S_ is the part of D which is on
the negative side of S, f C(D\ S) unless
other assumptions are stated explicitly. The
smoothness assumptions can be relaxed, but we
do not go into detail (see [6]). Define the pseudo-
local tomography function fd as follows:

(1) fd(x) "= (4zc)-2 L --o.x-d;’x+
/(0, p)[O’x p]-dpdO, x R,

where d > 0, fp "--8f/p, and define the com-
plementary function f (x) f(x) f (x).

Clearly, calculation of fd(x) at a point x in-
volves integration over only such (0, p)that
O’x--Pl <-- d, i.e., it requires the knowledge of

integrals of f along lines intersecting a disk cen-

tered at x with radius d. Thus, to speed up cal-
culations, we have to take d in (1) as small as
possible. Therefore we need to investigate the
properties of f as d---* 0. Since fc .___ f_ fd, the
above problem reduces to the investigation of the
convergence f---f as d--0. Moreover, since
calculation of fa does not involve integration

over the interval [x" O d, x" O 4- d] where the
Cauchy kernel is singular (this follows im-
mediately from the well-known inversion formula
for the Radon transform), the removal of the in-
terval can be considered as a possible method of
regularizing the inversion formula. Therefore, the
convergence f-- f as d---* 0 can be considered
as convergence of a regularized convolution and
backprojection (CB) algorithm to the original de-
nsity function. General results on convergence of
CB algorithms which take into account both reg-

ularization (which is different from ours) and dis-

cretization are obtained in [15].
In Theorem 1 we investigate the conver-

gence fc___.f in three cases" a) on compact sets
not intersecting S, b) at the points of S, and c) in

a neighborhood of S. In particular, we establish
the existence of a layer of width O(d) around S
inside which f does not converge to f in the
sup-norm. Additional results on convergence

f--* f are formulated in Theorem 4 below. Let
U c R be an open set, be its closure.

Theorem 1. If U ( S= 0 and x U c D
then fd(x) f(x) O(d) as dO and con-
vergence is uniform in U. If xo S and there ex-

ists a neighborhood U of the point Xo such that S is

smooth in U, then f: (Xo) f+ (x) + f-(x)
=2

O(d In d I) as d-- O, where f+ (Xo) and f_ (Zo) are

the limiting values off(x) as x approaches Xo from
S+ and S_, respectively. Let n+ be a unit normal to
S pointing into S+, n_-- n+, 7" 0 is a fixed
number, D+/- (xo) f (xo) f+ (Xo). Then

lim fa(Xo + ’dn+/-) lim [f(x0 + ’dn+/-)
d--*O dO

(2) f(Xo 4- ’dn+/-)] D+/-(x0)(’),
2 fo

min(l’l/r) arccos(’t)(-) dt ,>0
zc (1 t) /2

Moreover, (’) > 0 is monotonically decreasing,

(+ o) 0.5, and (r) 2(2r)- + O(r-)
as .--- oo.

Let U "= {x’x R2, dist (x, U) _< d},
where U is an open set in R, B(xo, d)’= {x"
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IX--Xol <d}, A (xo, a, b) "= {x a <_ lX-- Xo]
<- b}, 0 <_ a <_ b, OB(xo, d) "= {x" Ix-- Xol d}.

Theorem 2. Fix xo R such that either
B(xo, d) (3 S or B(xo, d) is transversal to
S at any pointofB(xo, d) f3 S, and Sis C in
a neighborhood of B(xo, d) f3 S. Then f(x)
C in a neighborhood of xo.

Corollary (Pseudolocality property), f
c(u) f c(u).

Let k and m denote integers k, m 0,1,2,
and D denote any partial derivative of order k.
Remark. In fact, if f C(Us), k_> 0,

then f C(U).
Theorem 3. (a) If f C-(U), k >_ 1,

Df exists and has a jump across S, S is
k

piecewise-smooth in U, then D fs C(U). (b) If
k 0 and f(x) has finite limits as x approaches S
from S+ and S_, then f e C( U).

Remark., Theorem 3 describes "preserva-
tion of discontinuities". Theorem 2 and 3 tell us,
in particular, that the difference f f--f is a
continuous function if f is piecewise continuous,
hence f and f have the same discontinuity curve
S and the same jumps across S. Thus Theorem 3
is the basis for the PLT. More details on its
numerical realization and results of numerical ex-

periments are given in [6].
Theorem 4. If f Cm (B(xo, R) ), then one

has for x B(xo, R) as d-- 0:
loafS(x) Df(x) o(1) ilk m
[Df(x) Df(x) o(d[ logd[) ilk- m-- 1
Df(x) Df(x) O(d) ilk <_ rn- 2.
The estimates are uniform in x B(xo, R’) for
any fixed R’, R’ R.

The generalization of (1) is a family of PLT
functions fad
(3) L(x)

1 fs’x+a(O’x-P)47r .x- :-] :2 f (0’ p) dpdO

where a(p) satisfies the properties
(1) ag(p) is real-valued and even;

(2) as(P) is piecewise continuously diffe-
rentiable and there are at most finitely many
poin,ts at which as is discontinuous; and
(3) a(p) a(p/d), a(p)- 1[_< O(p), p--O.

Remark. Taking a(p)=--1 in (3), we get
the PLT function defined in (1).

Theorem 5. The difference ffas is con-
tinuous, hence the functions f and fas have the
same discontinuity curve S and the same values of

jumps across S.
Although Theorem 5 asserts that the jumps

of f and fad are identical, this is not sufficient for
practical purposes. More precisely, we need to
know the behavior of fo in a neighborhood of S,
that is, we need to generalize eq. (2) for the PLT
function f. This is done in Section II.2 below
(see eq. (10)) using the relation between PLT and
LT functions. More details about the family of
PLT functions (3) and results of numerical ex-
periments are presented in [13].

2. Local tomograhy. Let
(4) b(O) C(S1), min b(O) > 0.

OS

Define
1 fs btO)f(O, O.x)dO(5) B(x) "=
47r

Let WF(f) denote the wave front of f.
Theorem 6. If (4) holds then WF(B)--

WF(f).
CorMlary. sing supp (B) sing supp (f).
Equation (5) is an LT formula for any

b(O) which satisfies conditions (4). The LT for-
mula of [1] is obtained from (5) by taking
b(O) 1. Note that eq. (5) can be written as
(6) B (x) .--1 {[ b(O) ]() },

where ff is the Fourier transform. As it was
noted, the LT function B(x)does not preserve
jumps of f across the discontinuity curve S.
However the values of jumps can be recovered
using the following result.

Theorem 7. Let the assumption be the same
as in Theorem 1. Let us pick any Xo S such that
S is smooth in a neighborhood U of xo. Let us con-

sider the action of the PDO with symbol g() on f
(7) (Bf) (x)

fn, fn, g()exp(i(x y)) f(y) dyd,

where g() satisfies the conditions g()= ]r

b(l1-1)(1 + O(ll-x)) as --+ for some

9"> O, b(O) as in(4), and b(O) b(- 0). Then

(8) (Bf) (x + hn)
b (n)D(x) R (Xs)

zc R (xs) + h

Im{fo Cr_(t, Xs)exp(ith)dt}
+ 7 (xs + hns), Xs S ( U, h-+O,

where D(xs) limt_o+ f(x + tns) f(x tns)
R(xs) and ns are the radius of curvature of S and
the unit vector perpendicular to S at Xs, respectively,
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r-1 is some function such that ’--l(t, x) tions ad(p) satisfying conditions (a)-(c) from Sec-
C([0, co) (S CI U)) and -r’[:’ Xs)= tr-(1 tion II.1 (below (3)) be given. Then, choosing a
+ O(t-)), t---’ oo, where O(t uuiform for x radial function M(x) such that its Radon trans-

S fl K for any compact K, xo K U, and r] form satisfies

(9) "=
Remark. The Radon transform is an even zrp [p I<_ d,

function of (0, p) and the assumption b(O) /17/oa(-- d) loa(d) O,
b(-- O) simplified the resulting formula (8). Be- f_ (s)
cause of the lack of space we do not give here that is od(p) e ds Ipl< d, we

d 7L’S

the general formula for the case b(O) =/= b(-- 0). obtain foe Me*f [13]. Using this relation and
Taking 7" 1 in eq. (8), using the well- eq. (8’), we derive [1:3]:

known identity exp(ith)dt- zc6(h) + i/h fo(Xs + hns) (Mod ,*fa)(Xs + hns)

and eqs. (6) and (7), we get D(xs)(h) + O(d In d), I__l_ < oo, d-+0,
Corollary. One has

12 f_ a(t)
(8’) B(xs + hns)

b(ns)D(xs) h-(1 + o(1)) h-+0. (10) o(h) In lh tl t dt.
7r 7L- d

Formula (8) and (8’) imply that the behavior Letting o’e(t) 1, tl <-- d, in (10) one can show

of B(x) in a neighborhood of x S depends that eqs. (10) and (2) are in complete agreement.

only on the magnitude D(Zs) of a jump of f :3. Geometric tomography. Duality law and

across S at xs. Thus, one can recover the map^ --’ S. In this section we will find a sub-

D(xs) using (8’). set S in the space (0, p) which is in a one-

We have developed also an approach for to-one correspondence with the discontinuity^
choosing an optimal formula (5) which gives the surfaces S of f, and the map^ which sends^S onto

most noise-stable estimate of B(z) by the trite- S. It turns out that the set S is singsuppf(O, p),
rion of the minimum variance of the error [22]. It and there is a ^simple geometrical connection be-

tween S and S which we call the duality law:is assumed that f(O, p)is observed with noise
(0, p), and under certain assumptions about the both S and are envelopes of a one-parametric

noise, the optimal b(O) is found from the family of straight lines tangent to each of them for

fsL appropriate choices of parameters. Thus, if one
requirement . b(O)b(O’)R(O, O’)dOdO" wishes to find S given f(O, p), one can find

min under the constraints (4) and (2rr) - first (e. g., by the methods given in [7, 10]) and

s then map it to S by the Legendre transform as
b(O)dO- 1. Here R(O, 0") is the covariance explained below. Practical applications of these

matrix of (0, p) calculated at (0, p O" x) ideas are given in [7].

and (0, p’-- 0‘’x) and integrated with respect Let ()x2- g(x) be the equation of S in

to x over R2
against a certain weight function local coordinates (x, x.). Assume g C. De-

fine q p / 0., fl "= 01 / 02 for 02 =/= 0, and
w(x) > O, ..w(x)dx = 1. If R(O, 0") let , . )q h(fl) be the equation of in the

R([ 0-- 0’ [), then $ has the unique solution local coordinates (/9, q). Here is the dual varie-

b(O) 1. In such a case, the standard LT for- ty with respect to S, that is, S is a set of

mula with b(O) 1 is optimal. In general, b(O) (0, p) such that the line O’x p is not trans-

g= const, versal to S for some x S. Define the Legendre

Let f denote the standard LT function (5) transform Lg of the function g(xl)" consider the

with b(O) -= 1. The reason for using such nota- equation g’(x) , assume that this equatien is

tion is clear from (4), because f Af= (-- uniquely solvable for _U, where U is a

A)/2f, where (--A) /2
is the square root of the neighborhood of the point fl- g’(3l) then Lg

negative Laplacian. It is interesting that there ex- "= x() g(xl()). The notion of the Legen-

ists a close relation between the family of PLT dre transform is classically defined for functions

functions (:3) and f. Indeed, let a family of rune- C2(U), U R", in which case Lg ’x(fl)
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g(x(fl)),fl Rn, fl x is the dot product. A
generalized Legendre transform is defined in [25,
27]. One can prove that Lg-" h(fl), where
g(xl) and h(fl) are the functions in
$ ). Since L is involutive, i.e. L= I, where I is
the identity operator, one obtains g- Lb. This is
the recipe for calculating S given " if h(fl) is
known, then the unknown g(x1) can be found by the

formula g Lb.
Let us explain the above statement concern-

ing envelopes. Consider the family of straight
lines
(11) fX q- x O.
Take q h(fl), so that lines (11) are tangent to
S, and consider (11) as a one-parametric family
of lines, fl being the parameter. Then the en-
velope of (11) is S, and the equation of S in the
local coordinates is obtained by classical rule for
calculation of the envelopes. This yields the
equation of S of the form
Lh, L is the Legendre transform. On the other
hand, take x. g(x
g(x1) is the local equation of S, and consider
(11) is a family of straight lines in the space
(/3, q). Then is the envelope of this family of
lines and the equation of is q----h(/3), where
h (fl) Lg (see [2 5, 2 7]).

Ill. Outline of some of the proofs. 1. One

can prove that fd(x) 7r_+o lirn Fq(x, q)

q-ldq and
--1 fdfn (x) 7r Fa (x q) q- dq

--f(O, x) [f (r, x)_
f(O, x)]r [1 (d/r)]

Here Fq’= OF/Oq, F (27r) -lfs‘f(0, x" 0 + q)dO,

and f(r, x)"= (2) -1 f.l.f(x 4- tO)dO, f(O, x)

"--f(+ 0, x). Pick any Xo and R > 0 such
that f(x) C (B (Xo, R)). Denoting M0(xo)
SUPxR If(x) f(xo) I, M.(r, Xo) "= sup x,,

Ix- Xol<r

02f(x)/Sxcx [, we obtain

f M(r, xo)dr
(12) If(Xo) f(Xo) E-

[1- (d/r)2] 1/
+

2d f(r, Xo) f(O_ o) dr
7r [1 (d l r)] ’1/

<_ 2d
[RM.(R Xo) + Mo (Xo) R-]

4- O(d3R -3) as d--* 0.
Now we pick xo S such that S is smooth in a
neighborhood of Xo. We denote by n+ the unit
normal to S .at xo pointing into S+ and n_----

n+. Let f+(Xo)(i7f+(Xo)) be the limits of
f(x) ( 7 f(x)) as x--* Xo from S+ or S_. Note that
f(0, Xo) [f_ (Xo) + f+ (Xo) ]/2. Let D (Xo) :--
f;(Xo) f+/-(Xo), Ro > 0 be the radius of curva-
ture of S at the point Xo, and A’--D+(xo)
(27fRo) -1 + Vf+ (Xo)" n+ + F’f_ (Xo)" n_] (47r) -1.
Approximating f(x)on each side of S using

f+/- (xo) and ITf+ (Xo) one can prove that
(13) f <Xo) f(o, Xo)

< 2d
iAi in

2R_--- -- + O(d) as d---* 0,

(14) lim [f(Xo + 7dn+/-) -f(Xo + rdn+/-)]
d-,0

-’o (1 t2) 1/2

Theorem 1 follows from estimates (12)-(14).
Changing variables in the definition of f,

we get

f (x) p (y x) f(y) dy,
-xl >d

p(y) "= dz-ly [-311 d.l y I-] -1/.
This formula allows one to prove that if f-- 0 on

U then f,(x) C(U). This and some addi-
tional estimates lead to Theorems 2-4. Statement
(b) of Theorem 3 can also be proved by consider-
ing the difference between f (see eq. (1)) and a

similar inversion formula for f from f, integrat-
ing by parts in p, and by using that f(0, p) is
discontinuous, at most, at countably many pairs
(0, j0). Theorem 5 is proved analogously.

2. Theorem 6 is proved using formula (6).
The operator Q "f(x) B(x) has the property
WF(Qf) WF(f). This follows from the PDO
theory [3]: the symbol b(O) is an elliptic PDO of
order zero, and I m

is a symbol of a PDO which
preserves wavefront. Thus, the operator Q pre-
serves wavefront of f To prove Theorem 7, we
pick any xo S such that S is smooth in a
neighborhood of Xo. Let w(x)be a Co cut-off
function with a sufficiently small support and
w-- 1 in a neighborhood of Xo. Denote fw --fw.
Clearly, Bf-- Bf C" in a neighborhood of
xo. Choose the coordinate system such that the
origin coincides with the center of curvature of S
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at Xo, and the xl-axis is perpendicular to S at xo.
The center of curvature is supposed to be on a
positive side of S, i.e. S+. Consider the rays
through the origin which intersect S inside the
support of w. Let Dw(O) denote the jump of f at
the intersection of S and the ray having angle 0
with the xl-axis, and Po(O) denote the distance
from the origin to the straight line which is tan-
gent to
S and is perpendicular to the above ray. Using
the Fourier slice theorem [14, p. 11] and the re-
sults from [26], we get from (7) in the above
coordinate system

B (x)
2 --3irC/4

(2ZC) 2
Re F(1.5)e

-a
g(tO)2

v/2R(0) D(O)_.(t, O)eta)-o’X)dOtdt} C

Using assumption from Theorem 7 about the
asymptotic of the symbol g, g(tO) trb(O), t, substituting x =Xs + hns, into the above
equation, investigating properties of the function
a(0, x)= Po(O)- O" x, and using the station-
ary phase method [3], we prove Theorem 7.

3. The ideas and results from Sections II.1
and II.2 can be generalized to n-dimensional
problems, n > 2, and to more general cases of
the Radon transform, e. g. exponential Radon
transform [51.

4. Description of the singular support of
the Radon transform as a dual variety to the
singular support of f can be generalized to
X-ray transform of f [27].

5. The results and techniques used in this
paper are based on the papers [6-13, 17-26].
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