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Computation of the Modular Equation
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Department of Mathematics, College of Education, Akita University

(Communicated by Shokichi IYANAGA, M. J. A., March 13, 1995)

1. Introduction. To each rational prime p,
the basic elliptic modular function j(z) gives rise
to the modular equation

(x, j) o.
To be more explicit, the p-th modular polynomial

(X, j) is defined by

q)(X, j) (X j(pz))
=o

z+i)
It is a polynomial in X and j(z) with rational in-
teger coefficients. These coefficients are, in
general, gigantic numbers for larger p and the ex-
plicit values of them are hard to determine. Clas-
sically, H. J. S. Smith computed them for p 2, 3
(1878, 1879), Berwick [21 for p= 5 (1916). In
recent years, Herrmann [4] published the results
up to p 7 (1975), and Kaltofen-Yui [5] gave

the results for p 11 (1984). In a letter to the
author dated December 3, 1992, Professor Yui

informed us that the explicit forms of (X, j)
are known up to p 31.

The purpose of this note is to give a simple
new algorithm to compute (X, j). By using it,
we have obtained explicit forms of them up to
p 53. Also, we have discovered some remark-
able properties of the coefficients of (X, j),
which may have some clues in the investigation
of the so called Moonshine phenomenon of the
Monster simple group.

We use Mathematica vet. 2 on Sony NEWS
3860 (a work station; 20 MIPS with 16 MB
RAM memory).

2. Preliminaries. Our approach begins
with the following well-known proposition:

Let f (z) be a SL(-modu!ar function that is

holomorhic on the upper half plane and let its

q- expansion be
-n -(n-l)

f(z) a_.q + a_._)q +
(a Z, q- e).
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Then f(z) is a polynomial F(j(z)) in j(z) with

coefficients in Z.
It is easy to give an algorithm to get

F(j(z)) by recursive procedure. (See Lang [9], p.
4.)

We can rewrite the modular polynomial as
follows"

#+1

p (X, j) Xp+I .ql_ Z (-- 1)s(j’)X*-+
i=1

xP+l + j+x + Z anmXnjm (anm Z).

Here we mean by s(j) the i-th fundamental sym-
metric function in

j(pz) j() j(z + 1) j(z + p 1).p p
which is evidently SL2 (Z) -modular and holomor-
phic on the upper half plane. So we have

s,@ s,(j)
for some polynomial S(J’) in j(z) (with coeffi-
cients in Z). We have to obtain the explicit forms
of the S(j). These matters are, of course, well
known. But, in general, it is quite difficult to get

the q-expansions of the s(g’)explicitly. (Except
for 1. In this case sx(j’) --j(pz) + j(z/p) +

+ j((z + p- 1)/p) q-* + 744(p + 1) +
o)
Herrmann [41 took the way of reducing

q-expansions of the s modulo various primes
and using an estimate of the coefficients plus the
Chinese remainder theorem he recovered the
values.

Kaltofen-Yui [5] took a different view point.
They started with the equation (P(g’(pz), j(z))
0. Substituting the q-expansions of j(z) and
j(pz), they got a system of linear equations in the

anm which has some special features suitable for
solving.

3, Our method. The key point of our
method lies in the use of power sums and the
Newton formula applying for j(z/p), j((z + 1)/
p), j((z + p 1)/p) (note that we treat
j(pz) separately).
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We put

O,<:n<m P-1 P J P

tk the k-th fundamental symmetric function of

1) +,- 1)’p ,...,j p

kp/ k
Also we put to- 1, t+ 0. Then we have

s j(pz)t_ + t (1 k p + 1).
Let the q-expansion of j(z) be as follows:

j(z) + Co + cq + cq + (cq
Then we have

j(pz) + Co + Cq + cq +""

p ’q/+co+ c

q/ (1)/).c +"" (-e
To get SO’) (= the polynomial expression of

s) in j), we need the q-expansions of the
s0") up to the constant term. So we must have
the q-expansions of the tO’) up to the p-th pow-
er of q. To compute them, we introduce the k-th
power sum u ofj(z/p) j((z + p 1)/p)"

=j +j.Z+ 1
p + -.+

j(z +,- 1) (1 k ).

Their q-expansions can be obtained from that of
j(z) . In fact, let

j( N c(

Then we have the following proposition.

Prstn 1.

, N c()q (
0

1, ( + N c(q"l
0

Proo See, for example, Lehner [7], . la8.
The Newton formula enables us to get recur-

sively the q-expansions of the

--1
t= 2 (--t)

1
t - (u- tu + tu)

Since the tk and the u,(k . p)have no polar
term and we need the q-expansions only up to
the p-the power of q, above calculations are in
effect polynomial calculations. Only t has polar
term 1/q.

In this way, we obtain the q-expansions of
the s up to the constant term and by the
well-known method explained in section 2 we get
the S (j).

Although in a different context, power sums
and the Newton formula already appeared in
modular function theory (Watson [0], Lehner [7,

4. Two remarks. We make two remarks
concerning the actual programming.
1. The values of cn.

We use the following formula of D. H.
Lehmer (Lehmer [6], Apostol [1], p. 93):

65520
691 {a, (n) v(n) }

n--1

v(n + 1) + 24(n) + cv(n- k,)
k=l

Here v(n) is Ramanujan’s tau function and
an(n) aln d. As z-(n) is a built-in function
in Mathematica, this seems the easiest way for us.
2. The computation of c, (n).

The computation of c(n) (--the coefficient
of q in the q-expansion of j(z) ) up to n--pZ
took most of our computer time. As we need j(z)
for whole 1 --< k-< p, we proceed in an iterative
way. Multiplying j(z) by q, we can treat it as a
polynomial in q. Let

n n

f(q) aq g(q) G bq (a, b
i=O i=O

We want to compute f(q)g(q) mod q+ efficient-
ly. Since the polynomial multiplication takes
much time and need considerable memory, we
actually did it as a list operation.

5. Some properties of a,/p(modp). Re-
call the Kronecker congruence relation"

q (X, j) (X j) (X j) (mod p)
In terms of the coefficients anm this means

anm 0 (modp)
except for ax a 1 (modp).

In this section, we consider anm (mod
Proposition 2. Suppose p <- 11. If nm :/:

0 (mod p) and (n, m) 4: (1,1), then we have
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anm 0 (modp).
Proof. By Lehner’s theorem [7, 8], we have

c(pn) =0 (modp), (p<-- 11)
for every integer n. Hence the algorithm ex-
plained in section 3 together with Proposition 1
gives the assertion.

When 13 <p< 23, we observe anmO
(modp2) for all n, m. When p229, there are
cases where p2 divides anm. For example, when
p 29, we have al,2 0 (mod 292).

At any rate, since we have an,n =-" 0 (modp)
(except for (n, m)= (1,1), (p, p)), we are led
to consider the behavior of a,m/P (modp), and
found some remarkable phenomenon.

Fact 1. Suppose 0 < n
(1,1) (i 1,2). If nx + rn n. + rn2 (mod
p- 1), then we have

a,m,/P = a**m./P (modp),
for p 31 or p 41,47,59,71. And for other
p 2617, these congruences don’t hold (at least for
some pair of indices).

Though we have gotten exact values of the

anm only up to p 53, what we need to verify
the above fact is their values modulo p2. So it be-
comes possible to check for p 59, 71. For
other p, what we actually checked is ap_l,p_
ap_2,_. (modp2). When this doesn’t hold, then
we next checked whether a_l,_, a_2,p-3
(modp). (This requires only the q-expansion of
j(z) (modp2) up to the term q.)

Fact 2. Suppose p 13, 17, 19 or 31. Then
to each n(2 _< n <_ p 1), the a/p (mod p) (1

rn p- 1) repeat themselves the following
values:

{8,12,5,1} ifp 13,
{2,13,8,1,15,4,9,16} /fp 17,
{7,1,11} /fp 19,
{7,1,27,24,3} ifp 31.

When n 1, then the same thing occurs but the
range of rn has to be changed to 2 rn <_ p.

This seems to show that there is certain
period f with the values of an,n/P (modp). As f

divides p- 1 in the above four cases, one might
expect f= p- 1 for other values of p(p
23,29,41,47,59,71). Also above examples sug-
gest various relations among the values (such as
8+ 5= 12+ 1 13 in casep= 13, etc.)

The primes p <_ 31, p 41,47,59,71 are
exactly the primes that divide the order of the
Monster simple group (cf. Conway-Norton [3]),
which are at the same time equal to the primes
for which the function field determined by the
normalizer of Fo(P) has genus 0. Up to present,
the modular equation has played no part in the
investigation of the Moonshine phenomenon. It
seems to the author that it will deserve further
study.
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