A Table of Absolute Norms of Heilbronn Sums

By Ken Yamamura
Department of Mathematics, National Defence Academy
(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1995)

Let p be an odd prime number and ζ a primitive p^{2} th root of unity. Let L be the unique subfield of $\boldsymbol{Q}(\zeta)$ of degree p. The p th Heilbronn sum is defined as the trace of ζ from $\boldsymbol{Q}(\zeta)$ to L. We denote by $N H_{p}$ its absolute norm. Fouché[1] proved that if l is a prime divisor of $N H_{p}$, then l satisfies the congruence

$$
l^{p-1} \equiv 1\left(\bmod p^{2}\right)
$$

This congruence is well known for $l=2$, because Wieferich [4] proved that if there exists a counterexample to the first case of Fermat's last
theorem for the exponent p (FLT,I, p), then $l=2$ satisfies the congruence above. Wieferich's result has been generalized as follows [3]: if there exists a counterexample to ($\mathrm{FLT}, \mathrm{I}, \boldsymbol{p}$), then all prime numbers l with $2 \leqq l \leqq 113$ satisfy the congruence above. In [1], the table of the values of $N H_{p}$ for $p<50$ was given (by the referee). We extend it to $p<100$ and give complete factorizations of $N H_{p}$. The computation was done on a NeXT computer.

Table

p	$N H_{p}$ (factorization)
3	-1
5	-1
7	97 (prime)
11	$-243=-3^{5}$
13	$12167=23^{3}$
17	-51140551819476687829 (prime)
19	$2727257042363914863401=17435281 \cdot 156421742922521$
23	$-2480435158303=-137 \cdot 18105366119$
29	221874931 (prime)
31	$-2572343484535669027372727=-19^{4} \cdot 19738518615846018887$
37	157112485811 (prime)
41	$1052824394331287344099620777449=53^{2} \cdot 374803985165997630508942961$
43	
47	

Continued

p	$N H_{p}$ (factorization)
53	2487208425325253346238365486641837
	$=15692059 \cdot 158501088055127331998838743$
59	- 385919393422883989361433232474228039
	$=-53^{2} \cdot 191559377 \cdot 717201928003392149777423$
61	2889586185058029549518039208456783772267
	$=2281 \cdot 5749 \cdot 4431029 \cdot 9582073 \cdot 94339087 \cdot 55012619117$
67	- 3332585486216383041159811020811948077704987791
	(prime)
71	- 159405892326070310729463014970352959169179259
	$=-11^{4} \cdot 161323 \cdot 498577 \cdot 3607523 \cdot 83966159 \cdot 446880809176117$
73	- 53638311006466780577262790821628723384059340479403
	$=-523605697 \cdot 102440273881257599413137765805532714408299$
79	1040611956630950417455971245710339238106740379250667
	$=31^{5} \cdot 5872927 \cdot 6189074918318922117260814024643164971$
83	- 36379133886955705100817312027432705145152593636880827
	$=-821 \cdot 77069 \cdot 2611457 \cdot 37082337983851 \cdot 5937170037444785228628289$
89	78527589016099848753383963120976963786343522050332935396040538173
	$=86955810683941 \cdot 903074658248253496993647901544985025793732684727353$
97	6987145228295591002299725696981364375137003233828984685582960524329359233
	$=107^{4} \cdot 53304596405474189704771268696350123732349499857182084995688692433$

Remark. In [2] Ihara tentatively defines the differential $d \alpha$ of nonzero number α which is not a root of unity in an algebraic number field k as a function on the set of the finite primes of k with value in $\left(\mathfrak{p} / \mathfrak{p}^{2}\right) \cup\{\infty\}$ for each prime \mathfrak{p}. According to his definition, the congruence

$$
\alpha^{N(p)-1} \equiv 1\left(\bmod \mathfrak{p}^{2}\right)
$$

is equivalent to $d \alpha(\mathfrak{p})=0$ for α with $\operatorname{ord}_{\mathfrak{p}} \alpha=0$, where $N(\mathfrak{p})$ denotes the absolute norm of \mathfrak{p} and $\operatorname{ord}_{\mathfrak{p}}$ the normalized additive \mathfrak{p}-adic valuation. Thus, when l is a prime divisor of $N H_{p}, p$ can be considered as a zero of the differential $d l$, and therefore we have got some big prime numbers l whose differential $d l$ has a small zero. We do not know when $N H_{p}$ has a big prime divisor, however, any other method of getting big prime numbers whose differential has a given small zero seems to be unknown.

References

[1] W. L. Fouché: Arithmetic properties of Heilbronn sums. J. Number Theory , 19, 1-6 (1984).
[2] Y. Ihara: On Fermat quotient and "the differentials of numbers". Algebraic analysis and number theory (Kyoto, 1992). Sūrikaisekikenkyūsho Kōkyūroku, no. 810, pp. 324-341 (1992) (in Japanese); (English transl. by S. Hahn with supplement): the Univ. Georgia Preprint Series, no. 9, vol. 2, 16 pp (1994).
[3] J. Suzuki: On the generalized Wieferich criteria. Proc. Japan Acad., 70 A, 230-234 (1994).
[4] A. Wieferich: Zum letzten Fermat'schen Theorem. J. reine angew. Math., 136, 293-302 (1909).

