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1. Introduction. Let G be a locally com-
pact Lie group and 7 a continuous representation
of G on a Hilbert space #. Let #. denote the
space of C”-vectors in #, endowed with a natu-
ral Sobolev-type topology, and #_, the dual of
#., endowed with the strong topology. We denote
the corresponding representation on #_, by the
same letter . Let S be a subset of G and ds a
measure on S. A vector ¢ € #__ is said to be
S-strongly admissible for 7 if there exists a
positive constant ¢g, such that

W [, 29> s = coul 1T

forall f € ¥,
where <- ">:;e and | * ||y€ denote the inner product
and the norm of # respectively. We easily see
that ¢ € #_,, is S-strongly admissible for m if
and only if, as a functional on #,

@  f= c;,;fs<f, () ) 4 7(s) dpds

forall f€ # ...
We call {f, m(s)¢> the wavelet transform of f
associated to (G, &, S, ¢) in the sense that, by
specializing (G, m, S, ¢), the above formula
yields a group theoretical interpretation of va-
rious well-known wavelet transforms. For exam-
ple, we first let S= G, ds = dg, a Haar mea-
sure of G, and (7, #) a square-integrable repre-
sentation of G, that is, m is an irreducible

unitary representation satisfying O<f| {9,
G

(@ ¢> °dg < o for all ¢, ¢ in #. Then 7 is a
discrete series of G and every ¢ E X is a
G-strongly admissible vector for 7 (see [3]). The
Gabor transform and the Grossmann-Morlet
transform correspond to the Weyl-Heisenberg
group and the one-dimensional affine group re-
spectively (cf. [7, §3]). Next let H be a closed
subgroup of G and 7 a discrete series of G/H.
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Then there exists an H-invariant distribution
vector ¢ € #__, for which (2) holds by replacing
S and ds with G/H and a G-invariant measure
on G/H respectively (cf. [12]). We can treat this
case in our scheme, because the integral over
G/H can be regarded as the one over S =
0,(G/H) where 0,: G/H— G is a flat section
of the fiber bundle G— G/H.

These considerations are based on the exist-
ence of the discrete series of G or G/H, so it
seems to be difficult to unfold the same process
in the case that G has no such representations.
One approach to treat the case is to find a non
flat Borel section ¢ : G/H— G. In the case of
the Poincaré group and the affine Weyl-
Heisenberg group, Ali, Antoine, and Gazeau [1]
and Kalisa and Torrésani [10] respectively find a
non square-integrable reprepentation (7, #), a
¢ in #, and a non {flat section o such that (2)
holds for 7, ¢, and S = ¢(G/H). In this paper
we shall investigate a transform associated to a
principal series representation of noncompact
semisimple Lie groups and we obtain a gener-
alization of the Grossmann-Morlet transform and
the Carderon identity. A transform associated to
the analytic continuation of the holomorphic dis-
crete series and its limit will be treated in the
forthcoming paper [9].

2. Principal series representations. Let G
be a noncompact connected semisimple Lie group
with finite center and g = f + a, + n, an Iwasa-
wa decomposition of the Lie algebra g of G.
According to the process in [4, §6], we shall de-
fine a standard parabolic subalgebra p = m + a
+ n. Let 22 be the set of roots of (g, a,) positive
for n, and 22, the subset of 2 consisting of sim-
ple roots. For each FC 2, we set a = ap =
{HE€ a,; a(H) =0 for all « € F} and n = n,
= Zaez\):,,- g, Where g, is the root space corres-
ponding to a. Then the parabolic subalgebra p of
g is given by p =m + a + n where Z,(a) = m
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+ a. The set of roots of (g, a) positive for n is
given by 2(a) = {a”;a € X} where a” = a,
and let p = 2,5 @/2. We denote by K, A,
M,, A, and N the analytic subgroups of G cor-
responding to £, a,, m, a, and n respectively. The
parabolic subgroup P of G corresponding to
p is given by P = MAN where M = Z,(a) M,
We denote by 6 the Cartan involution of G and
put N = 6(N). Haar measures dg, dm, dn, and
din of G, M, N, and N are respectively normal-

ized as the following integral formula holds: for f
e L'(G)

@ [r@a=[[[[  roman

™" ? diidmdadn,

where da is the Lebesgue measure on A (see [5,
§19)). For A € a?, the dual space of the complex-
ification of a, we define 1® ¢' ® 1(man) =
(man)* = " and let 7, = IndS(1 ® ¢’ ® 1).
A dense subspace of the representation space
HQ) is

(4) {f = C(G) ;f(gman) — e—(i1+p)(log a)f(g)

(g € G, man € MAN)}

with norm || £f = J; | f(k) °dk. By restricting f

to N, we see that H(R) is identified with L*(N,
¢ PSMEM ) and the action of G is given by

(5) nl(g)f(ﬁ) — e(il+p)log a(g'ln)f(ﬁ(g——lﬁ))’
where g = kma"*n € G=KMAN and g=
i(gma(@n € N MAN. Then =, is unitary if
and only if 2 € a* (see [6, §4]). Let S(N) be the
Schwartz space on N and &'(N) the dual
space with respect to

Sy @rm = j};f(k)g_(k)dk.

3. Plancherel formula for L°(N). General
theory of the Plancherel formula on nilpotent Lie
groups (cf. [2, 4.3.10]) yields that

© 1o = fU  1ou@ lhs ) do

for all ¢ € L*(N).
Here U is the set of generic coadjoint orbits, V;
a subspace of ﬁ*, o, the irreducible unitary rep-
resentation of N corresponding to @ € U, and

0,(¢) the operator defined by Gw(¢)=j:
N

¢ (@) o, (M) din . Moreover, | - |lzs is the Hilbert-
Schmidt norm and g(w)dw the Plancherel mea-
sure on U N V,. Since U is Zariski open, we
may replace U N V; in (6) by V; or Vy, the set
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of regular elements in V,. We here note that

(7)  0,(Ad(S) ) ~ Oprgis1y (W) (s € MA),
where Ad(s D@ = wAd(s)7) (cf. [2, 2.1.3))
and 0,(¢) is well-defined for ¢ € & (N) as an
operator on S(N).

4. Main theorem. Let S be a measurable
subset of MA and ds a measure on S. We sup-
pose that there exists ¢ € J8’(N) satislying for
all w € Vi

(i) 0,(P) o, (D" = n,(W]I,
(19) 0< j;n(,)(Ad(s'l)w)ds = gy < ©

where #n,(w) is a real number, I is the identity
operator, and ¢, is independent of w.

Theorem 1. Let ¢ € S (N) be as above and
suppose A|g = — io|s. Then ¢ is a N S-strongly
admissible vector for «,, thatl is,

f-[?us' {f, () P 125, |2dﬁd$ = Cs0 ”f"iztﬁ)

for all f € S(N).

Proof. We first recall that, since A ls = —1p |s,

7,() ¢ (@) = p(Ad(s H7s™)

= ¢(Ad(s HA)s™.

Then, it follows from (%) and (7) that
(8) Mo 5r0(@) = n,(Ad(s Hw).
Therefore, (1), (41), (6), and (8) yields that for f €
S(N)

S L 1< 099> s, Famas
— [ [ 1 rx@©e 6 [ dnds
@@ = §G™)
S Vo @09 (@ dads

— o

T7’<0w(f)‘j; o, (7, () ) *o, (7, (s) ) ds-
00 (N*) (@) dw

= Csy f;” 0, () s n(w)dw

= ¢ | f 2, O

Similarly, we can deduce the following,

Theorem 2. Let ¢ € S’ (N) be as above and
suppose Als=0. Then, ¢ is a SN-strongly
admissible vector for ;, that is,

fj;xﬁl {f, ;) ) 25, |2d$dﬁ = Cs, ||f||iz(xn
forall f € S(N).

Remark 3. The conclution in Theorem 1 is
equivalent to the following identity:

4
T
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f= Cs_,;,j;f* (1, () P) ™ % 1,(s) pds
for all f € S(N).

We may regard this identity as a generalization
of the Carderon identity (cf. [11, p.16]).

5. Examples. We recall a basis realization
of ,(w € V) (cf. [2, 4.1.1]). Let m be a polariz-
ing subalgebra for all w (we abuse m in p) and
{X,..., X,,..., X,} aweak Malcev basis for fi
passing through m where # = dimfi and m =
dim m. If we put Kk = m — n and define 7(¢) =
exp t,X,,,,...exp t,X, for t = (t,,..., t,) € R",
then 7:R*— G is a cross-section for M\ G
(M = exp m), and the Lebesgue measure df on
R* corresponds to a G-invariant measure on
M\ G. Then, o, is_realized on L*(R") as
O'w(ﬁ)f(t) — eZniw(X(r(t)n ))f(t(T(t)ﬁ)) where 71 =
exp X(#)7(t(@) (X() € m, t(@) € R*), and
0,(¢) (¢ € S (N)) is the operator with the

kernel given by K,(t', D =fxw(m)¢(7’(t')_lm
M

2niw(Y)
for YEm

r(8))dm where x,(expY) = e
(cf. [2, 4.2.2]). We here assume that

(A1) m is ideal and fi/m is abelian.
Then, K,(¥, t) = f e2m‘w(Ad(r(tr))Y)¢(eXp Yr(t —

m

t))dY. We now specialize ¢ € S'(N) by letting
o@) = T(X@))E({t@#) where Te SR™
and 5 € S’ (R") satisfy

9 | TAIG®w) | =] T(w) | and | E® | =1

forall t€ R"

respectively. Since K (¢, ) = TAdG(— ) w)
Et—1t), 0,(¢) satisfies 0,(¢) ) = T(Ad
(r(— )w)E™ * f(t') and hence, #n,(w) =|T(w) [
in (7). Next we identify V; with R” by using
coroots vectors. Then we assume that there ex-
ists a subgroup A; of A, such that dimA, = r»
and

(A2) da = T%

forx=Ad@w (@€ A, w € V,),
where | x| =TI,_, | z;]. Let & denote the set of
signatures ¢ = (¢, . . .,¢,) where ¢, = £ 1 for
1 < i<, and D, the domain in R” defined by
D.={x€ R ;0<¢x, <ol <i<n} Since

n¢(w) = | @'(CU) |2 and _/; an(Ad(a) w) da = jl;sgnw

n,(x)dx/| x| for w € V7, the condition (if) for S
= A, can be rewritten as
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10) 0< [ 1#@) [ = c, <o foralle €6,
D5

where ¢y is independent of €. Therefore, under
(A1) and (A2) the conditions (i) and (4) hold for
¢ = UE satisfying (10). For example, when (a)
G=SLn+2, R) n=>1), N=H, the @n +
1)-dimensional Heisenberg group, and A, =
{diag(a, 1,...,1,a D;a<€ R,}, and (b) G =
SL(4, R), N = N,, the group of lower triangular
4 X 4 matrices with 1’s along the diagonal, and
A, = {diag(a, b, b, a™ ) ;a, b€ R,}, we can
show (A1) and (A2) and moreover, we can find
U and E satisfying (9) and (10) (see [8)).

Remark 4. For a nonempty subset £ of &,
we define SV = {fe SN ;0,(f) =0 if
sgnw & ¥} and instead of (10) we suppose that
T in (9) satisfies

N 2 X _ JCypy ife € YL
(11) »I;El V) | Txl {0 otherwise,
where ¢y y is nonzero finite and independent of
¢ € €. Then Theorem 1 and Theorem 2 respec-
tively hold for Jf(ﬁ).
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