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Abstract: If z° + y* + z° =0, (p, zyz) = 1 has a solution, then @’™*
= 1 (mod p°) for a < 113.

0. Introduction. Let p be an odd prime. Throughout this paper we
assume that there exists a solution of Fermat’s equation '+ yp +22=0
such that (p, zyz) = 1. Then a’~' = 1 (mod p°) holds for a = 2. This is
known as the Wieferich criterion. This criterion has been extended for
a < 31[5], a < 89[2]. In this paper, we shall extend it up to a < 113,
which implies: if we have a solution (x, y, 2) such that (p, xyz) = 1, then
we can get p > 8.858 X 10%°[1].

Let A = {- L _ %, ~¥ _2 _ _z_, - % (modp)] for a solution of

y’ 2’ Yy’ x
2’ + 4y’ + 2 =0, (p, zyz) = 1. Let ¢ be any element of A. Then
A=[tll—t 1 =1 ¢ (mod )}
' T—¢  f t—1 :

There are two possibilities:

(a) A= {—1,2,1/2 (mod p)}

(b) A has six elements.

When (m, h) = 1, then for any #, there exists a unique solution # for Au =
n (mod m) such that 0 < u < m. Let g""(X) = X' and G,(X) be the
2¢(h) X @(h) matrix (g;”,n(X))1$m<2h,1Sn<h,(m,h)=(n,h)=l‘ Let I be a @(h)-ple
(my, my, . . ., M,y such that 1 < m; < 2h, (m;, h) = 1, m; + m; (0 # j5)
and G,(X) be the submatrix of G,(X) by choosing m,, m,, . .., M, as m.
Then Pollaczek [5] proved the following theorem:

Theorem. Suppose there exists t € A such that t°* # 1 (mod p). For any
h with 3 < h < (a— 1)/2 if it is possible to find a @ (h)-ple I (depending on t
and h) such that G1(f) % 0 (mod p) then we have @’ = 1 (mod p°).

We could verify the existence of ¢ and I for every £, 3 < h < (@ — 1)/2
as referred above for all @ < 113 by computation. We shall describe our
method of computation in two stages. We first treat the case |A| = 3 in 8§1.
Secondly, we treat the case |A| =6 in 82. The case | A| = 6 needs large
amount of computation.

1. The case |A| =3. When A = {— 1,2,1/2 (mod p)}, we choose 2
astLetl=m<m,<--- <my, =h—1,1 = (m, m,,..., m,y) and
I, = (my, m,, ..., myy_;, h + 1). For example, in the case 2 = 53, we get
the following result:

ged (det G3(2), det G:2(2)) = (168 digits number) =



No. 7] On the Generalized Wieferich Criteria 231

3%.5"%.7".11*-18°-17°.19-238°-31°-41-43%-47-73*-89°- 127°-
151°-241-257%-337-601-683-1801-8191°-131071°-178481-524287.
Likewise we factorize gcd (det G;*(2), det G;*(2)) for all 3 < h < 56
= (113 — 1)/2, and list the prime factors 3,5,7,..., for any one g of which
we verify 27" % 1 (mod ¢°). This means that 2’ + y* + 2° =0, (zyz, q) = 1
has no solution, and thus det G;*(2) or det G;*(2) # 0 (mod p). If 2° 7' =1
+ kp for some k € Z, then using the Wieferich criterion we have 1 =
@Y =14 (p — 1)kp (mod p”). So we have 2°7' =1 (mod p?). How
ever it is easily shown that this never happens for, say, any @ < 200, by us-
ing Lehmer’s computation [4]. Therefore we have 2°7' # 1 (mod p). Now we
can use the theorem and we get @’ = 1 (mod p?).
2. The case |A| = 6. When A has six elements, Pollaczek [5] and
Gunderson [3] proved
1 =D+ DE+t+ DE+ DE — ¢+ 1) # 0 (mod p).
Before computing det G;(X) we can obtain some factors of det G5(X). For
example, when & = 53, X* — 1 divides go"(X) — g2"(X). This fact is ex-
plained by the following lemma [2, Lemma 28]:
Lemma. Lot I|m. Then X' — 1 divides
(2) g (X - g"(Xx).
Letk|m, I|m and e = I (mod k). Then (X* — 1) (X' — 1) divides
(3) X —Dg"X) — X' — Dgi"X) + X' — X9g,"(X)
and
(4) (1 _ Xk—e)g;n.n(X) _ (Xl+k—e _ Xk—e)g’l:,n(X) + (Xl+k—e _ l)g;,n(X)
Let m = II_, p{* be the prime factorization of m such that p, < p, <
c++ < p, When » =1, we use (2) as [ = m/p,, When » > 1, we use (3) or
(4) as l=m/p, k=m/p, 0 <e<k Namely we define f, (X) as
follows: 1 ifm=1,
@/x'—1) ifr=1,
@/X'=D&X =1 ifr>lande<k—e,

W/(X'-1D(X*—1) ifr>1lande>k—e.
Clearly, the degree of f,""(X) is at most d(m) where
0 ifm=1,
dm) ={m—1-—1 ifr=1,
m—1—1—max(k —e, e if r>1.
We use the matrix F,(X) = (fhm'n(X))1Sm<2h,1Sn<h,(m,h>=(n,h>=1 instead of
G,(X). We define F(X) similarly as G(X).

The theorem in §0 is also correct if we replace G;(¢) by F;(® (2,
Theorem 5]).

Let @,(X) be the m-th cyclotomic polynomial. When det Fl(X is
calculated. we devide det F,,I(X) by X and 0,(X), 1 <m < 2h, as far as
possible. Let C,{(X) be the product of all possible such factors. Then we get
Qi (X) = det F; (X)/C}(X). For example when h = 53,

I,=(Q1,2,3,4,6,5,8,10,12,7,9,14,18,15,16,20,24,11,22,30,13,21,26,28,36,

70 =
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42,17,32,34,40,48,19,27,38,54,25,33,44,50,60,23,46,66,39,45,52,
56,72,35,78,29,58)
IL=C(.. 29,70), I,= (..., 5884), I,= (..., 29,70), I,= (..., 58,84).
I, have been chosen as follows: Let S, = {m; (m, h) =1, 1 <m < 2h — 1}.
We number m € S, such that d(m,) < d(m,;,,) or d(m;)) = d(m,,,), m,
< mj,;. Then
I = {my, myy .oy Myy_zy Moiy—1s Moy
I, = oo Mgy Moy Moanetds I = Loy Mya_gs Myy_1, Moysd) s
’Ilf = {0 Mooz Moiyr Monards I = Loty Mygy_s, My, Mygysa) -
hen we have
CCor(X) : XD, (X0 0,(X) B, (X) B, (X)° B (X)° D, (X) for I = I,
X0, (X% 0,(X)*0,(X)°0,(X)°0,(X)0,,(X) 0,,(X) for I = I,
X007 0,(X)*0,(X)°0,(X)" P (X)' D, (X) D,,(X) for I = I,
X"0,(X0%°0,(X)*0,(X) ! 0,(X)° 0, (X)°0,,(X)° for [ = I,
X%, (X*P,(X)*0,(X)*D,(X)" D (X)°D,(X)? for I = I,
Degrees of Qi,(X) :528 for I =1, I,, 530 for I = I,, 526 for I = I,, 532
for I = I,. Let R,(I;, I,) be the resultant of Q;'(X) and Q,'(X). Then
R, (I, I,) = (28087 digits number), but
ged(Ry3(1y, 1), Ryy(ly, Iy, Rys(1,, 1)
= 320410393 = 4889:65537.
Let ¢ be a prime factor of the above ged. We can verify 2" # 1 (mod ¢%).
Therefore ¢ ¥ p and for any t € A we have Q (® # 0 (mod p) for some
IL,G=1, , ). A list of results of factorization of ged of R,(I,, I) is
appended below
Let S={k:k+6,5<k, 0,(X) divides C/'(X) for some h(B<h
< 56) and [;(1 < i< 5)}. Let T,, be the resultant of @, (X) and &,(1 — X).
Let ¢ be a prime factor of some T, k, ] € S. We can verify 27" # 1 (mod
q”). Therefore ¢ # p and T, # 0 (mod p) for any k, Il € S. If there exists k
€ S and t € A such that @,(f) = 0 (mod p), then we have @,(1 /(1 — 9) #
0 (mod p) and @,(1 — 1/(1 — #)) # 0 (mod p) for any Il € S, because

0,0=0 00 -n=0 ©0,(7=) =0

©0,(3)=080,(1-7) =00, (;11) % 0 modp.
Therefore there exists ¢t € A such that @,(#) # 0 (modp) and @,(1 — O
# 0 (modp) for any k€ S. Using (1), this is also valid for k €
{1,2,3,4,6}. We can factorize T, easily (see the Table III of [2] for k, I
< 109).

Let U= {@a — 1;a:prime, @ < 113}. Let 9,(X) = (X* — D/AX°* — 1)
if k=0 (mod6), v,(X) = X* — 1 otherwise. Let V, be the resultant of
v,(X) and v,(1 — X). Let ¢ be a prime factor of some V,, kK € U. We can
verify 27" # 1 (mod ¢%). Therefore V, % 0 (mod p) and for any ¢t € A and
for any prime a < 113, we have *"' # 1 (modp) or (1 — H** % 1 (mod p)
because of (1).

Now we can use also in this case the theorem in §0. First of all there
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exists 1 € A such that @,(f) # 0 (mod p) and &,(1 — ) # 0 (mod p) for
any k € S U {1,2,3,4,6}. We fix @ < 113. If ™' = 1 (mod p) then we use
1 — ¢t instead of ¢ So there exists ¢t € A such that @,(H) # 0 (mod p) and
t*™" # 1 (mod p). For this ¢ and for any 2(3 < h < 56) there exists I, such
that Q;( # 0 (mod p). Hence we have det Fl'(® # 0 (mod p) and finally
we get @' = 1 (mod p°) for any a < 113. We can see some of large factors
of V, for k € U, in Table III of [2].

We implemented the program for the above computation in FORTRAN
on a HITAC S-820/80 at Computer Centre University of Tokyo. In case
h = 53, where ¢@(h) is maximal for 3 < & < 56, we have obtained five
polynomials Q;;(i =1,...,5) within about 120 seconds.

Table gcd(R,(I, I,), R,,, I), R,(1,, I,), R,(I;, 1)) (h < 44)

gcd(R, (I, I), R,(1,, 1), R,(1,, I)) (h = 45)
For 3 < h<10, h =12, h = 14, we can find Q,f‘(t) = 1 for some I,.

h factorization

11 | 59)°

13 | (2°-3-19%*
15 | (252

16 | (3°-5)°

17 | (5°-73)*
18 | 72

19 | 2%-3°7)?
20 |1

21 | 13

22 | (2°-5%-11-31)°
23 | (2*-3-7-11%*

24 | (3%+13)°

25 | 2%

26 | (2-3%-5%.7-19%-73-769)*
27 | 1

28 | (2%-3%-5-7°.11%-13)°
29 (262.33‘76)2

30 | (2-5)*

31 | (27-3"-5%)*
32 | 3*17)°
33 | (2"-5)?

34 | (2"%-3%5°19)*

35 | (2%-3*13%?

36 | (7-13%-19-31-79)°

37 | (2"-3%.7°.19%-37%)°*

38 | (2*-3"-7-19°-73-487)°
39 | (2°-3".5°.13%.19°-37%°
40 | (2°-5%-7-41%»°

41 (262_36'59.1111)2
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(1]

(2]

[3]

[4]
[5]

(6]
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h factorization

42 | (2-3°5°-7°-13%H%

43 | (2"-3°-5%-7"%.29%.211%°

44 | (2°-3%-5*7-11*23%-29-31°-101-641-15641)>
45 | (2**.3*5-7-11)*

46 | (2°-3*-11*-23%-67-89-37181)"
47 | (2**-3-5%-11-17-23"-139%°
48 | 3°-13

49 | (2°-3-43%)7

50 | (3*-11°-23:29-31-47)°

51 (233 . 33 . 52)4

52 | (2*-3*-5*-7°-13%19*-73-769)°
53 | 4889-65537

54 | (7-17-19-37-73-271-307)°
55 | (2"-3%5%-11"-19)*

56 | (2°-3%.5°-7-11*-13%-43-73)*
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