53. On the Generalized Wieferich Criteria

By Jiro SUZUKI

School of Allied Medical Sciences, Shinshu University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1994)

Abstract: If $x^p + y^p + z^p = 0$, (p, xyz) = 1 has a solution, then $a^{p-1} \equiv 1 \pmod{p^2}$ for $a \le 113$.

0. Introduction. Let p be an odd prime. Throughout this paper we assume that there exists a solution of Fermat's equation $x^p + y^p + z^p = 0$ such that (p, xyz) = 1. Then $a^{p-1} \equiv 1 \pmod{p^2}$ holds for a = 2. This is known as the Wieferich criterion. This criterion has been extended for $a \le 31[5]$, $a \le 89[2]$. In this paper, we shall extend it up to $a \le 113$, which implies: if we have a solution (x, y, z) such that (p, xyz) = 1, then we can get $p > 8.858 \times 10^{20}[1]$.

Let
$$A = \left\{-\frac{x}{y}, -\frac{y}{x}, -\frac{y}{z}, -\frac{z}{y}, -\frac{z}{x}, -\frac{z}{z} \pmod{p}\right\}$$
 for a solution of $x^p + y^p + z^p = 0$, $(p, xyz) = 1$. Let t be any element of A . Then
$$A = \left\{t, \frac{1}{t}, 1 - t, \frac{1}{1 - t}, \frac{t - 1}{t}, \frac{t}{t - 1} \pmod{p}\right\}.$$

There are two possibilities:

- (a) $A = \{-1, 2, 1/2 \pmod{p}\}$
- (b) A has six elements.

When (m, h) = 1, then for any n, there exists a unique solution u for $hu \equiv n \pmod{m}$ such that $0 < u \le m$. Let $g_h^{m,n}(X) = X^{u-1}$ and $G_h(X)$ be the $2\varphi(h) \times \varphi(h)$ matrix $(g_h^{m,n}(X))_{1 \le m < 2h, 1 \le n < h, (m,h) = (n,h) = 1}$. Let I be a $\varphi(h)$ -ple $(m_1, m_2, \ldots, m_{\varphi(h)})$ such that $1 \le m_i < 2h$, $(m_i, h) = 1$, $m_i \ne m_j$ $(i \ne j)$ and $G_h^I(X)$ be the submatrix of $G_h(X)$ by choosing $m_1, m_2, \ldots, m_{\varphi(h)}$ as m. Then Pollaczek [5] proved the following theorem:

Theorem. Suppose there exists $t \in A$ such that $t^{a-1} \not\equiv 1 \pmod{p}$. For any h with $3 \leq h \leq (a-1)/2$ if it is possible to find a $\varphi(h)$ -ple I (depending on t and h) such that $G_h^I(t) \not\equiv 0 \pmod{p}$ then we have $a^{p-1} \equiv 1 \pmod{p^2}$.

We could verify the existence of t and I for every h, $3 \le h \le (a-1)/2$ as referred above for all $a \le 113$ by computation. We shall describe our method of computation in two stages. We first treat the case |A|=3 in §1. Secondly, we treat the case |A|=6 in §2. The case |A|=6 needs large amount of computation.

1. The case |A| = 3. When $A = \{-1,2,1/2 \pmod{p}\}$, we choose 2 as t. Let $1 = m_1 < m_2 < \cdots < m_{\varphi(h)} = h-1$, $I_1 = (m_1, m_2, \ldots, m_{\varphi(h)})$ and $I_2 = (m_1, m_2, \ldots, m_{\varphi(h)-1}, h+1)$. For example, in the case h = 53, we get the following result:

gcd (det $G_{53}^{I_1}(2)$, det $G_{53}^{I_2}(2)$) = (168 digits number) =

 $3^{58} \cdot 5^{12} \cdot 7^{17} \cdot 11^{4} \cdot 13^{3} \cdot 17^{5} \cdot 19 \cdot 23^{3} \cdot 31^{9} \cdot 41 \cdot 43^{2} \cdot 47 \cdot 73^{4} \cdot 89^{3} \cdot 127^{6} \cdot$ $151^2 \cdot 241 \cdot 257^2 \cdot 337 \cdot 601 \cdot 683 \cdot 1801 \cdot 8191^2 \cdot 131071^2 \cdot 178481 \cdot 524287$.

Likewise we factorize gcd (det $G_h^{I_1}(2)$, det $G_h^{I_2}(2)$) for all $3 \le h \le 56$ = (113-1)/2, and list the prime factors $3,5,7,\ldots$, for any one q of which we verify $2^{q-1} \not\equiv 1 \pmod{q^2}$. This means that $x^q + y^q + z^q = 0$, (xyz, q) = 1has no solution, and thus det $G_h^{I_1}(2)$ or det $G_h^{I_2}(2) \not\equiv 0 \pmod{p}$. If $2^{a-1} = 1$ + kp for some $k \in \mathbf{Z}$, then using the Wieferich criterion we have $1 \equiv$ $(2^{a-1})^{p-1} \equiv 1 + (p-1)kp \pmod{p^2}$. So we have $2^{a-1} \equiv 1 \pmod{p^2}$. How ever it is easily shown that this never happens for, say, any $a \le 200$, by using Lehmer's computation [4]. Therefore we have $2^{a-1} \not\equiv 1 \pmod{p}$. Now we can use the theorem and we get $a^{p-1} \equiv 1 \pmod{p^2}$.

- 2. The case |A| = 6. When A has six elements, Pollaczek [5] and Gunderson [3] proved
- $t(t-1)(t+1)(t^2+t+1)(t^2+1)(t^2-t+1) \not\equiv 0 \pmod{p}.$ Before computing $\det G_h^I(X)$ we can obtain some factors of $\det G_h^I(X)$. For example, when h = 53, $X^{26} - 1$ divides $g_{53}^{52,n}(X) - g_{53}^{26,n}(X)$. This fact is explained by the following lemma [2, Lemma 28]:

Lemma. Let $l \mid m$. Then X' - 1 divides

(2) $g_h^{m,n}(X) - g_h^{l,n}(X)$. Let $k \mid m$, $l \mid m$ and $e \equiv l \pmod{k}$. Then $(X^k - 1)(X^l - 1)$ divides (3) $(X^e - 1)g_h^{m,n}(X) - (X^l - 1)g_h^{k,n}(X) + (X^l - X^e)g_h^{l,n}(X)$ and

(4) $(1-X^{k-e})g_h^{m,n}(X) - (X^{l+k-e}-X^{k-e})g_h^{k,n}(X) + (X^{l+k-e}-1)g_h^{l,n}(X).$ Let $m = \prod_{i=1}^r p_i^{e_i}$ be the prime factorization of m such that $p_1 < p_2 <$ $\cdots < p_r$. When r = 1, we use (2) as $l = m/p_l$. When r > 1, we use (3) or (4) as $l = m/p_1$, $k = m/p_2$, 0 < e < k. Namely we define $f_h^{m,n}(X)$ as follows:

follows:
$$f_h^{m,n}(X) = \begin{cases} 1 & \text{if } m = 1, \\ (2)/(X^l - 1) & \text{if } r = 1, \\ (3)/(X^l - 1)(X^k - 1) & \text{if } r > 1 \text{ and } e \le k - e, \\ (4)/(X^l - 1)(X^k - 1) & \text{if } r > 1 \text{ and } e > k - e. \end{cases}$$
Clearly, the degree of $f_h^{m,n}(X)$ is at most $d(m)$ where
$$d(m) = \begin{cases} 0 & \text{if } m = 1, \\ m - 1 - l & \text{if } r = 1, \\ m - 1 - l - \max(k - e, e) & \text{if } r > 1. \end{cases}$$
We use the matrix $F_h(X) = (f_h^{m,n}(X))_{1 \le m \le h} (m,h) = (m,h) = 1 \text{ institute}$

$$d(m) = \begin{cases} 0 & \text{if } m = 1, \\ m - 1 - l & \text{if } r = 1, \\ m - 1 - l - \max(k - e, e) & \text{if } r > 1. \end{cases}$$

We use the matrix $F_h(X) = (f_h^{m,n}(X))_{1 \le m < 2h, 1 \le n < h, (m,h) = (n,h) = 1}$ instead of $G_h(X)$. We define $F_h^I(X)$ similarly as $G_h^I(X)$.

The theorem in $\S 0$ is also correct if we replace $G_h^I(t)$ by $F_h^I(t)$ ([2, Theorem 5]).

Let $\Phi_m(X)$ be the m-th cyclotomic polynomial. When $\det F_{\scriptscriptstyle h}^{\scriptscriptstyle I}(X)$ is calculated. we devide $\det F_h^I(X)$ by X and $\Phi_m(X)$, $1 \le m < 2h$, as far as possible. Let $C_h^I(X)$ be the product of all possible such factors. Then we get $Q_h^I(X) = \det F_h^I(X) / C_h^I(X)$. For example when h = 53,

 $I_1 = (1,2,3,4,6,5,8,10,12,7,9,14,18,15,16,20,24,11,22,30,13,21,26,28,36,$

42,17,32,34,40,48,19,27,38,54,25,33,44,50,60,23,46,66,39,45,52,56,72,35,78,29,58)

 $I_2=(\ldots,29,70),\ I_3=(\ldots,58,84),\ I_4=(\ldots,29,70),\ I_5=(\ldots,58,84).$ I_i have been chosen as follows: Let $S_h=\{m\;;\;(m,\,h)=1,\;1\leq m\leq 2h-1\}.$ We number $m\in S_h$ such that $d(m_j)< d(m_{j+1})$ or $d(m_j)=d(m_{j+1}),\ m_j< m_{j+1}.$ Then

$$\begin{split} I_1 &= \{m_1,\, m_2, \ldots,\, m_{\varphi(h)-2},\, m_{\varphi(h)-1},\, m_{\varphi(h)}\}, \\ I_2 &= \{\ldots,\, m_{\varphi(h)-2},\, m_{\varphi(h)-1},\, m_{\varphi(h)+1}\}, \quad I_3 &= \{\ldots,\, m_{\varphi(h)-2},\, m_{\varphi(h)-1},\, m_{\varphi(h)+2}\}, \\ I_4 &= \{\ldots,\, m_{\varphi(h)-2},\, m_{\varphi(h)},\, m_{\varphi(h)+1}\}, \quad I_5 &= \{\ldots,\, m_{\varphi(h)-2},\, m_{\varphi(h)},\, m_{\varphi(h)+2}\}. \end{split}$$
 Then we have

$$\begin{split} C_{53}^{I}(X) : & X^{17} \Phi_{1}(X)^{37} \Phi_{2}(X)^{38} \Phi_{3}(X)^{4} \Phi_{4}(X)^{6} \Phi_{6}(X)^{8} \Phi_{12}(X) \text{ for } I = I_{1} \\ & X^{16} \Phi_{1}(X)^{37} \Phi_{2}(X)^{38} \Phi_{3}(X)^{3} \Phi_{4}(X)^{6} \Phi_{6}(X)^{7} \Phi_{10}(X) \Phi_{12}(X) \text{ for } I = I_{2} \\ & X^{17} \Phi_{1}(X)^{37} \Phi_{2}(X)^{38} \Phi_{3}(X)^{3} \Phi_{4}(X)^{7} \Phi_{6}(X)^{7} \Phi_{10}(X) \Phi_{12}(X) \text{ for } I = I_{3} \\ & X^{15} \Phi_{1}(X)^{35} \Phi_{2}(X)^{36} \Phi_{3}(X)^{4} \Phi_{4}(X)^{6} \Phi_{6}(X)^{8} \Phi_{12}(X)^{2} \text{ for } I = I_{4} \\ & X^{16} \Phi_{1}(X)^{35} \Phi_{2}(X)^{36} \Phi_{3}(X)^{4} \Phi_{4}(X)^{7} \Phi_{6}(X)^{8} \Phi_{12}(X)^{2} \text{ for } I = I_{5}. \end{split}$$

Degrees of $Q_{53}^I(X)$: 528 for $I = I_1$, I_5 , 530 for $I = I_2$, 526 for $I = I_3$, 532 for $I = I_4$. Let $R_h(I_i, I_j)$ be the resultant of $Q_h^{I_i}(X)$ and $Q_h^{I_j}(X)$. Then

$$R_{53}(I_1, I_2) = (28087 \text{ digits number}), \text{ but } \gcd(R_{53}(I_1, I_2), R_{53}(I_2, I_3), R_{53}(I_4, I_5)) = 320410393 = 4889.65537.$$

Let q be a prime factor of the above gcd. We can verify $2^{q-1} \not\equiv 1 \pmod{q^2}$. Therefore $q \neq p$ and for any $t \in A$ we have $Q_{53}^{I_i}(t) \not\equiv 0 \pmod{p}$ for some $I_i(i=1,\ldots,5)$. A list of results of factorization of gcd of $R_h(I_i,I_j)$ is appended below.

Let $S = \{k : k \neq 6, 5 \leq k, \Phi_k(X) \text{ divides } C_h^{I_i}(X) \text{ for some } h(3 \leq h \leq 56) \text{ and } I_i(1 \leq i \leq 5)\}$. Let $T_{k,l}$ be the resultant of $\Phi_k(X)$ and $\Phi_l(1 - X)$. Let q be a prime factor of some $T_{k,l}$, $k, l \in S$. We can verify $2^{q-1} \not\equiv 1 \pmod{q^2}$. Therefore $q \neq p$ and $T_{k,l} \not\equiv 0 \pmod{p}$ for any $k, l \in S$. If there exists $k \in S$ and $k \in A$ such that $\Phi_k(k) \equiv 0 \pmod{p}$, then we have $\Phi_l(1/(1-k)) \not\equiv 0 \pmod{p}$ and $\Phi_l(1-1/(1-k)) \not\equiv 0 \pmod{p}$ for any $k \in S$, because

$$\Phi_{k}(t) \equiv 0 \Leftrightarrow \Phi_{l}(1-t) \not\equiv 0 \Leftrightarrow \Phi_{l}\left(\frac{1}{1-t}\right) \not\equiv 0
\Leftrightarrow \Phi_{k}\left(\frac{1}{t}\right) \equiv 0 \Leftrightarrow \Phi_{l}\left(1-\frac{1}{t}\right) \not\equiv 0 \Leftrightarrow \Phi_{l}\left(\frac{t}{t-1}\right) \not\equiv 0 \pmod{p}.$$

Therefore there exists $t \in A$ such that $\Phi_k(t) \not\equiv 0 \pmod{p}$ and $\Phi_k(1-t) \not\equiv 0 \pmod{p}$ for any $k \in S$. Using (1), this is also valid for $k \in \{1,2,3,4,6\}$. We can factorize $T_{k,l}$ easily (see the Table III of [2] for $k,l \leq 109$).

Let $U=\{a-1\ ; a: \text{prime, } a\leq 113\}$. Let $v_k(X)=(X^k-1)/(X^6-1)$ if $k\equiv 0\pmod 6$, $v_k(X)=X^k-1$ otherwise. Let V_k be the resultant of $v_k(X)$ and $v_k(1-X)$. Let q be a prime factor of some V_k , $k\in U$. We can verify $2^{q-1}\not\equiv 1\pmod q^2$. Therefore $V_k\not\equiv 0\pmod p$ and for any $t\in A$ and for any prime $a\leq 113$, we have $t^{a-1}\not\equiv 1\pmod p$ or $(1-t)^{a-1}\not\equiv 1\pmod p$ because of (1).

Now we can use also in this case the theorem in §0. First of all there

exists $t \in A$ such that $\Phi_k(t) \not\equiv 0 \pmod p$ and $\Phi_k(1-t) \not\equiv 0 \pmod p$ for any $k \in S \cup \{1,2,3,4,6\}$. We fix $a \leq 113$. If $t^{a-1} \equiv 1 \pmod p$ then we use 1-t instead of t. So there exists $t \in A$ such that $\Phi_k(t) \not\equiv 0 \pmod p$ and $t^{a-1} \not\equiv 1 \pmod p$. For this t and for any $h(3 \leq h \leq 56)$ there exists I_t such that $Q_h^{I_t}(t) \not\equiv 0 \pmod p$. Hence we have $\det F_h^{I_t}(t) \not\equiv 0 \pmod p$ and finally we get $a^{b-1} \equiv 1 \pmod p^2$ for any $a \leq 113$. We can see some of large factors of V_k for $k \in U$, in Table III of [2].

We implemented the program for the above computation in FORTRAN on a HITAC S-820/80 at Computer Centre University of Tokyo. In case h=53, where $\varphi(h)$ is maximal for $3 \le h \le 56$, we have obtained five polynomials $Q_{53}^{I_i}(i=1,\ldots,5)$ within about 120 seconds.

Table $\gcd(R_h(I_1, I_2), R_h(I_2, I_3), R_h(I_4, I_5), R_h(I_5, I_1))$ $(h \le 44)$ $\gcd(R_h(I_1, I_2), R_h(I_2, I_3), R_h(I_4, I_5))$ $(h \ge 45)$ For $3 \le h \le 10$, h = 12, h = 14, we can find $Q_h^{I_1}(t) = 1$ for some I_i .

h	factorization
11	$(5^2)^2$
13	$(2^5 \cdot 3 \cdot 19^2)^2$
15	$(2^2)^2$
16	$(3^2 \cdot 5)^2$
17	$(5^3 \cdot 73)^2$
18	7^2
19	$(2^{13} \cdot 3^5 \cdot 7)^2$
20	1
21	134
22	$(2^5 \cdot 5^2 \cdot 11 \cdot 31)^2$
23	$(2^3 \cdot 3 \cdot 7 \cdot 11^3)^4$
24	$(3^2 \cdot 13)^2$
25	2^{36}
26	$(2 \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 19^2 \cdot 73 \cdot 769)^2$
27	
28	$\left(2^{\frac{6}{3}} \cdot 3^{2} \cdot 5 \cdot 7^{3} \cdot 11^{2} \cdot 13^{2}\right)^{2}$
29	$(2^{62} \cdot 3^3 \cdot 7^6)^2$
30	$(2.5)^4$
31	$(2^{7} \cdot 3^{7} \cdot 5^{2})^{4}$
32	$(3^2 \cdot 17)^6$
33	$(2^{13} \cdot 5)^2$
34	$(2^{13} \cdot 3^8 \cdot 5^5 \cdot 19)^2$
35	$(2^{21} \cdot 3^4 \cdot 13^2)^2$
36	$(7.13^{3}.19.31.79)^{2}$
37	$(2^{14} \cdot 3^{29} \cdot 7^6 \cdot 19^8 \cdot 37^2)^2$
38	$(2^4 \cdot 3^{14} \cdot 7 \cdot 19^5 \cdot 73 \cdot 487)^2$
39	$\left(2^{6} \cdot 3^{14} \cdot 5^{3} \cdot 13^{2} \cdot 19^{2} \cdot 37^{2}\right)^{2}$
40	$(2^2 \cdot 5^2 \cdot 7 \cdot 41^2)^2$
41	$(2^{62} \cdot 3^6 \cdot 5^9 \cdot 11^{11})^2$

h	factorization
42	$(2\cdot 3^8\cdot 5^6\cdot 7^5\cdot 13^4)^2$
43	$(2^{17} \cdot 3^6 \cdot 5^2 \cdot 7^{10} \cdot 29^2 \cdot 211^2)^2$
44	$(2^8 \cdot 3^8 \cdot 5^4 \cdot 7 \cdot 11^4 \cdot 23^2 \cdot 29 \cdot 31^6 \cdot 101 \cdot 641 \cdot 15641)^2$
45	$(2^{12} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11)^4$
46	$(2^5 \cdot 3^4 \cdot 11^4 \cdot 23^2 \cdot 67 \cdot 89 \cdot 37181)^2$
47	$(2^{12} \cdot 3 \cdot 5^2 \cdot 11 \cdot 17 \cdot 23^{18} \cdot 139^4)^2$
48	$3^2 \cdot 13$
49	$(2^9 \cdot 3 \cdot 43^2)^2$
50	$(3^4 \cdot 11^3 \cdot 23 \cdot 29 \cdot 31 \cdot 47)^2$
51	$(2^{33} \cdot 3^3 \cdot 5^2)^4$
52	$(2^4 \cdot 3^4 \cdot 5^4 \cdot 7^3 \cdot 13^4 \cdot 19^2 \cdot 73 \cdot 769)^2$
53	4889 · 65537
54	$(7 \cdot 17 \cdot 19 \cdot 37 \cdot 73 \cdot 271 \cdot 307)^2$
55	$(2^{73} \cdot 3^6 \cdot 5^9 \cdot 11^{11} \cdot 19)^2$
56	$(2^8 \cdot 3^3 \cdot 5^5 \cdot 7 \cdot 11^4 \cdot 13^8 \cdot 43 \cdot 73)^2$

References

- [1] Coppersmith, D.: Fermat's last theorem (case 1) and the Wieferich criterion. Math. Comp., **54**, 895-902 (1990).
- [2] Granville, A., and Monagan, B.: The first case of Fermat's last theorem is true for all prime exponents up to 714,591,416,091,389. Trans. Amer. Math. Soc., 306, 329-359 (1987).
- [3] Gunderson, N. G.: Derivation of criteria for the first case of Fermat's last theorem and the combination of these criteria to produce a new lower bound for the exponent. Thesis. Cornell University (1948).
- [4] Lehmer, D. H.: On Fermat's quotient, base two. Math. Comp., **36**, 289-290 (1981).
- [5] Pollaczek, F.: Über den grössen Fermat'schen Satz. Wien. Berichte. Abt. IIa, **126**, 45-59 (1917).
- [6] Suzuki, J.: On the generalized Wieferich criteria for the first case of Fermat's last theorem (in preparation).