78. Gauss Decomposition of Connection Matrices and Application to Yang-Baxter Equation. II

By Kazuhiko Aomoto *) and Yoshifumi Kato**)

(Communicated by Heisuke Hironaka, m. J. A., Oct. 12, 1993)

We follow the same terminologies as in [1].

1. Gauss decomposition of \boldsymbol{G}. Case where $\boldsymbol{m}=2$. The matrix $G=G(x$ $\left.\mid \alpha_{1}\right)$ depends on x_{2} / x_{1} and of size $n+1$. We denote by $g_{n-i, n-j}=g_{n-i, n-j}\left(x_{2}\right.$ $\left./ x_{1}\right)$ its entries as

$$
\begin{equation*}
g_{n-i, n-j}=\left(Y_{i, n-i}^{+}: \operatorname{reg} Y_{j, n-j}^{-}\right)_{\Phi_{n, 2}^{(a)}} \tag{1.1}
\end{equation*}
$$

where the corresponding summits $\xi=v_{i, n-i}^{+}$and $\eta=v_{j, n-j}^{-}$are given by ξ_{k} $=x_{1} q^{1+(k-1) r}(1 \leq k \leq i), x_{2} q^{1+(k-i-1) r}(1+i \leq k \leq n)$ and $\eta_{k}=x_{1} q^{-\beta-(k-1) r}$ $(1 \leq k \leq j), x_{2} q^{-\beta-(k-i-1) \gamma}(1+j \leq k \leq n)$ respectively.

First we present a few basic properties of the principal connection matrix G.

Lemma 1.

$$
\begin{equation*}
\tau_{1} G\left(x \mid \alpha_{1}\right)={ }^{t} G\left(x \mid \alpha_{1}\right)={S_{\tau_{1}}^{\prime-1}}^{\prime-} G\left(x \mid \alpha_{1}\right) \cdot S_{\tau_{1}}^{\prime} \tag{1.2}
\end{equation*}
$$

where ${ }^{t} G\left(x \mid \alpha_{1}\right)$ denotes the transposed matrix and $S_{\tau_{1}}^{\prime}$ denotes the matrix with only non-zero $(i, n-i)$ th components $a_{i, n-i}\left(\frac{x_{2}}{x_{1}}\right)$,

$$
a_{i, n-i}(u)=u^{-2 r i(n-i)} q^{\gamma^{2} i(n-i)(-n+2 i)+i(n-i)} \frac{\theta\left(q^{-i \gamma} u\right)_{\hat{i}} \theta\left(q^{(1-i) r} u\right)_{\hat{i}}}{\theta\left(q^{1-(n-i) r} u^{-1}\right)_{\hat{i}} \theta\left(q^{1-(n-i-1) r} u^{-1}\right)_{\hat{i}}}
$$

for $\hat{\imath}=\min (i, n-i)$. In particular $a_{0, n}(u)=a_{n, 0}(u)=1$.

$$
\begin{equation*}
S_{\tau_{1}}^{\prime}=\Lambda^{-1} S_{\tau_{1}} \tau_{1} \Lambda, \text { for } \Lambda=\operatorname{Diag}\left[\lambda_{0}, \ldots, \lambda_{n}\right] \tag{1.3}
\end{equation*}
$$

where $\lambda_{i}=\lambda_{i}\left(x_{2} / x_{1}\right)=\theta\left(q^{1-i \gamma} x_{2} / x_{1}\right)_{\hat{i}} \theta\left(q^{1-(i-1) r} x_{2} / x_{1}\right)_{\hat{i}}\left(\frac{x_{2}}{x_{1}}\right)^{\hat{i}-r i(n-i)} q^{i^{2}(n-i) r^{2}-i \hat{i} r}$ and $S_{\tau_{1}}$ denotes the matrix with only non zero $(i, n-i)$ th components 1 so that $S_{\tau_{1}}^{2}=1$.

$$
\begin{gather*}
G\left(x \mid \alpha_{1}\right)^{-1}=\left(q^{2 n\left(\beta^{2}+\beta\right)} /(1-q)^{2 n}\right) M \tag{1.4}\\
G\left(x^{-1} \mid-\alpha_{1}-2 \beta+2(n-1)(\gamma-1)\right) \cdot M^{\prime}
\end{gather*}
$$

where M and M^{\prime} denote the diagonal matrices $M=\operatorname{Diag}\left[\mu_{0}, \ldots, \mu_{n}\right], M^{\prime}=$ Diag $\left[\mu_{0}^{\prime}, \ldots, \mu_{n}^{\prime}\right]$ such that $\mu_{n-i}=\left(\frac{x_{2}}{x_{1}}\right)^{2 i \beta} a_{i}\left(\frac{x_{2}}{x_{1}}\right) a_{n-i}\left(\frac{x_{1}}{x_{2}}\right) a_{n-i, i}\left(\frac{x_{2}}{x_{1}}\right), \mu_{n-i}^{\prime}=$ $\left(\frac{x_{2}}{x_{1}}\right)^{-2 i \beta} a_{i}\left(\frac{x_{1}}{x_{2}}\right) a_{n-i}\left(\frac{x_{2}}{x_{1}}\right) a_{n-i, i}\left(\frac{x_{1}}{x_{2}}\right)$. Here $a_{i}(u)$ denotes

$$
\begin{equation*}
a_{i}(u)=q^{i(i-1) \beta \gamma+\gamma^{2}(i-1) i(i+1) / 3+\gamma(i-1) i / 2} \cdot \frac{\theta\left(q^{1+\gamma}\right)_{i} \theta\left(q^{1+\beta}\right)_{i} \theta\left(q^{1+\beta} u\right)_{i}}{\theta^{\prime}(1)^{i} \theta\left(q^{1+\gamma}\right)^{i} \theta(q u)_{i}} \tag{1.5}
\end{equation*}
$$

where $\theta(u)_{i}$ denotes the product $\theta(u) \theta\left(u q^{\gamma}\right) \cdot \cdots \theta\left(u q^{(i-1) \gamma}\right)$ and $\theta^{\prime}(1)=$

[^0]$\left[\frac{d \theta(u)}{d u}\right]_{u=1}=-(q)_{\infty}^{3}$. Remark that $a_{i, n-i}(u) \cdot a_{n-i, i}\left(u^{-1}\right)=1$.
We want to define the special cycles reg $Y_{i}^{-} \otimes Y_{n-i}^{+}(0 \leq i \leq n)$ which play a central role in our discussion.

Definition 1. The cycle $Y_{i}^{-} \otimes Y_{n-i}^{+}$is defined as the set of $t \in\left(\boldsymbol{C}^{*}\right)^{n}$ such that $t_{j}=x_{1} q^{-\beta-\nu_{j}-(j-1) r}(1 \leq j \leq i),=x_{2} q^{1+\nu_{j}+(j-i-1) r}(i+1 \leq j \leq n)$ for $\nu_{j} \in \boldsymbol{Z}_{\geq 0}$. Its regularization reg $Y_{i}^{-} \otimes Y_{n-i}^{+}$is constructed such that the Jackson integral of $\Phi_{n, 2}^{(a)}(t)$ over the cycle reg $Y_{i}^{-} \otimes Y_{n-i}^{+}$can be obtained by taking residues of $\Phi_{n, 2}^{(a)^{2}}(t)$ along the loci $t_{1}=x_{1} q^{-\beta-\nu_{1}}, \ldots, t_{i}=x_{1} q^{-\beta-\nu_{i}-(i-1) r}$ (see for details [2]).

The cycles reg $Y_{i}^{-} \otimes Y_{n-i}^{+}$are characterized by the following asymp. totics.

Lemma 2. For $\left|x_{1}\right| \gg\left|x_{2}\right|$, we have

$$
\begin{equation*}
\int_{\operatorname{reg} Y_{i}^{-} \otimes Y_{n-1}^{+}} \Phi_{n, 2}^{(a)}(t) \tilde{\omega} \sim \Pi_{k=1}^{i}\left(\frac{x_{2}}{x_{1}} q^{\beta+(k-1) r}\right)^{\beta} \frac{\theta\left(q^{-\beta-(k-1) \gamma} x_{1} / x_{2}\right)}{\theta\left(q^{-(k-1) \gamma} x_{1} / x_{2}\right)} \tag{1.6}
\end{equation*}
$$

$\cdot B_{i}^{(-)}\left(\alpha_{1}+\beta+n-i\right) B_{n-i}^{(+)}\left(\alpha_{1}+i(1-2 \gamma)\right) x_{1}^{\alpha_{1}+\cdots+\alpha_{i}+i \beta+(n-i) i} x_{2}^{\alpha_{i+1}+\cdots+\alpha_{n}}$.
The meaning of Gauss decomposition can be explained as follows. In the homology $H_{n}\left(\left(\boldsymbol{C}^{*}\right)^{n}, \Phi_{n, 2}^{(a)}, \partial_{q}\right)$ associated with Jackson integrals (2.4) in [1], we have two kinds of relations,

$$
\begin{align*}
Y_{i, n-i}^{+}= & \sum_{j=0}^{n} g_{n-i, n-j} \operatorname{reg} Y_{j, n-j}^{-} \tag{1.7}\\
\operatorname{reg} Y_{i}^{-} \triangleq Y_{n-i}^{+} & =\sum_{i \leq j \leq n} \omega_{n-i n}^{(n)}{ }^{-i n-j} \text { reg } Y_{j, n-j}^{-} \tag{1.8}\\
& =\sum_{0 \leq j \leq i} \omega_{n-i, n-j}^{*} Y_{n-i, n-j}^{+} \tag{1.9}
\end{align*}
$$

These identities give the Gauss decomposition stated in [1]. Concerning explicit description of $\omega_{n-i, n-j}^{(n)}=\omega_{n-i, n-j}^{(n)}\left(\left.\frac{x_{2}}{x_{1}} \right\rvert\, \alpha_{1}\right)$ and $\omega_{n-i, n-j}^{*(n)}=\omega_{n-i, n-j}^{*(n)}\left(\left.\frac{x_{2}}{x_{1}} \right\rvert\, \alpha_{1}\right)$ in terms of theta rational functions we can state the following theorem.

Theorem 1. The elements $\omega_{n-i, n-j}^{(n)}$ and $\omega_{n-i, n-j}^{*(n)}$ are expressed in terms of theta monomials as follows.

$$
\begin{align*}
& \omega_{n, n-i}^{(n)}\left(\left.\frac{x_{2}}{x_{1}} \right\rvert\, \alpha_{1}\right)=g_{n, n-i}\left(x \mid \alpha_{1}\right)=(1-q)^{n} q^{-\frac{1}{2} n(n-1) r-i(n-i) r\left(\alpha_{1}-(n+i-1) r\right)+c_{n}} \tag{1.10}\\
& \quad \cdot\left(\frac{x_{2}}{x_{1}}\right)^{i\left(\alpha_{1}-(i-1) r\right)} \frac{(q)_{\infty}^{3 n} \theta\left(q^{\alpha_{1}+2+\beta-(n-1) r} x_{2} / x_{1}\right)_{i} \theta\left(q^{1+\gamma}\right)^{i}}{\theta\left(q^{1+\alpha_{1}-2(n-1) r}\right)_{n} \theta\left(q^{2+\beta} x_{2} / x_{1}\right)_{i} \theta\left(q^{1+\gamma}\right)_{i}} \\
& \quad \cdot \frac{\theta\left(q^{\alpha_{1}+2+\beta-(n-1) r}\right)_{n-i} \theta\left(q^{1+\gamma}\right)^{n-i} \theta\left(q^{1+(1-i) \gamma} x_{1} / x_{2}\right)_{\hat{i}}}{\theta\left(q^{2+\beta}\right)_{n-i} \theta\left(q^{1+r}\right)_{n-i} \theta\left(q^{-(n-i) \gamma} x_{2} / x_{1}\right)_{\hat{i}}}
\end{align*}
$$

for $\quad C_{n}=-\frac{2}{3} n(n-1)(2 n-1) \gamma^{2}-\frac{n(n-1)}{2} \gamma+n \beta\left(\alpha_{1}-(n-1) \gamma\right)+$ $n \alpha_{1}(1+(n-1) \gamma)$.

$$
\begin{align*}
& \omega_{n-i, n-j}^{(n)}\left(\left.\frac{x_{2}}{x_{1}} \right\rvert\, \alpha_{1}\right)=\omega_{n-i, n-j}^{(n-i)}\left(q^{i \gamma} x_{2} / x_{1} \mid \alpha_{1}+i(1-2 \gamma)\right) \tag{1.11}\\
& \omega_{n-i, n-j}^{*(n)}\left(\left.\frac{x_{2}}{x_{1}} \right\rvert\, \alpha_{1}\right)=(1-q)^{-2 i}\left(\frac{x_{2}}{x_{1}}\right)^{2(i-j) \beta} q^{2 i\left(\beta^{2}+\beta\right)} \tag{1.12}\\
& \quad \cdot a_{i}\left(\frac{x_{2}}{x_{1}}\right) a_{n-i}^{-1}\left(\frac{x_{2}}{x_{1}}\right) a_{j}\left(\frac{x_{1}}{x_{2}}\right) a_{n-j}\left(\frac{x_{2}}{x_{1}}\right) \omega_{i, j}^{(n)}\left(\left.\frac{x_{2}}{x_{1}} \right\rvert\, \tilde{\alpha}_{1}\right),
\end{align*}
$$

for $\tilde{\alpha}_{1}=-\alpha_{1}-2 \beta+2(n-1)(\gamma-1)$. In particular we have $\omega_{0,0}^{(n)}=\omega_{n, n}^{*(n)}$ $=1$.

Indeed (1.10) is an immediate consequence of [1](3.4) and (3.5). (1.11) is obtained from (1.10) by reducing it to lower dimensional Jackson integrals with respect to the variables t_{i+1}, \ldots, t_{n}, while $t_{1}=q^{-\beta-\nu_{1}} x_{1}, \ldots, t_{i}=$ $q^{-\beta-\nu_{i}-(i-1) \gamma} x_{1}$ are fixed. (1.12) is obtained from (1.4) and (1.8) by the substitution $t_{1} \rightarrow t_{1}^{-1}, \ldots, t_{n} \rightarrow t_{n}^{-1}$.

Hence the one cocycle $\left\{W_{e}, W_{\tau_{1}}\right\}$ defined by $[1](1.3)$ has the expression, $W_{e}=1$ and

$$
\begin{equation*}
W_{\tau_{1}}=\Omega \cdot S_{\tau_{1}}^{\prime} \cdot\left(\tau_{1} \Omega\right)^{-1}=\Omega \Lambda^{-1} \cdot S_{\tau_{1}} \cdot\left(\tau_{1}\left(\Omega \Lambda^{-1}\right)\right)^{-1} \tag{1.13}
\end{equation*}
$$

so that we have $W_{\tau_{1}} \cdot \tau_{1} W_{\tau_{1}}=1$.
2. Yang-Baxter equation. Case where $m \geq 3$. As beforehand, G is of size $\binom{m+n-1}{m-1} \times\binom{ m+n-1}{m-1}$ and has the similar properties to the ones in Lemma 1.
(2.1)

$$
\tau G\left(x \mid \alpha_{1}\right)=S_{\tau}^{\prime-1} G\left(x \mid \alpha_{1}\right) S_{\tau_{1}}^{\prime}
$$

where the one cocycle $\left\{S_{\tau}^{\prime}\right\}_{\tau \in \coprod_{m}}$ corresponds to a symmetric representation $\left\{S_{\tau}\right\}_{\tau \in \mathfrak{\Im}_{m}}$ of \mathfrak{S}_{m} induced by permutations among α - unstable cycles reg $Y_{f_{1}, \ldots, f_{m}}^{-}$,

$$
\begin{equation*}
S_{\tau}^{\prime}=\Lambda(x)^{-1} S_{\tau}\left(\tau \Lambda(x)^{-1}\right)^{-1} \tag{2.2}
\end{equation*}
$$

for a suitable diagonal matrix $\Lambda(x)$. We can introduce the lexicographic ordering into the set of partitions $F=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ as follows.

We say that $\left\langle f_{1}, \ldots, f_{m}\right\rangle$ is greater than $\left\langle f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right\rangle$ if and only if there exists an integer r such that $f_{r}>f_{r}^{\prime}, f_{r+1}=f_{r+1}^{\prime}, \ldots, f_{m}=f_{m}^{\prime}$. By using this ordering we can define the lower and upper triangular matrices Ω and Ω^{*} respectively such that the corresponding entries $\omega_{F, F^{\prime}}$ and $\omega_{F, F^{\prime}}^{*}=0$ according as $F<F^{\prime}$ and $F>F^{\prime}$ respectively. The cycles $Z_{F}=\sum_{F \geq F^{\prime}} \omega_{F, F^{\prime}}^{(n)}$, reg $Y_{F^{\prime}}^{-}=\sum_{F \leq F^{\prime}} \omega_{F, F^{\prime}}^{*(n)} Y_{F^{\prime}}^{+}$give characteristic asymptotics of corresponding Jackson integrals [1](2.4) for $\left|x_{1}\right| \gg \cdots\left|x_{m}\right|$ (see also [5] in relation to quantum $K Z$ equations). G has the Gauss decomposition and

$$
\begin{equation*}
W_{\tau}^{(m)}=\Omega S_{\tau}^{\prime}(\tau \Omega)^{-1}=\left(\Omega \Lambda^{-1}\right) S_{\tau}\left(\tau\left(\Omega \Lambda^{-1}\right)\right)^{-1} \tag{2.3}
\end{equation*}
$$

defines a one-cocycle. Under this circumstance,
Theorem 2. For two partitions $F=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ and $F^{\prime}=\left\langle f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right\rangle$ of n we have the expression for the $\left(F, F^{\prime}\right)$ element $w_{r ; F, F^{\prime}}$ of the matrix $W_{\tau_{r}}=$ $\left(\left(w_{r ; F, F^{\prime}}\right)\right)_{F, F^{\prime}}$ as

$$
\begin{equation*}
w_{r ; F, F^{\prime}}=\delta_{f_{1} f_{1}^{\prime}} \cdots \delta_{f_{r-1} f_{r-1}^{\prime}} \delta_{f_{r+2} f_{r+2}^{\prime}} \cdots \delta_{f_{m} f_{m}^{\prime}} \tag{2.4}
\end{equation*}
$$

$$
\begin{gathered}
w_{r ; f_{r+1}, f^{\prime} r+1}^{(2)}\left(\left.\frac{x_{r+1}}{x_{r}} \right\rvert\, \alpha_{1}+\left(f_{1}+\cdots+f_{r-1}\right)(1-2 \gamma)+(m-r-1) \beta\right. \\
\left.+\left(n-f_{1}-\cdots-f_{r+1}\right)\right)
\end{gathered}
$$

The matrix $W_{r}^{(2)}=\left(\left(w_{r ; i, j}^{(2)}\right)\right)_{i, j=0}^{f_{r}+f_{r+1}}$ is of order $f_{r}+f_{r+1}+1$, where f_{1}, \ldots, $f_{r-1}, f_{r+2}, \ldots, f_{m}$ and $f_{1}^{\prime}, \ldots, f_{r-1}^{\prime}, f_{r+2}^{\prime}, \ldots, f_{m}^{\prime}$ being fixed such that $f_{1}=f_{1}^{\prime}, \ldots$, $f_{r-1}=f_{r-1}^{\prime} f_{r+2}=f_{r+2}^{\prime}, \ldots, f_{m}=f_{m}^{\prime}$. This is the connection matrix for Jackson integrals of the function $\Phi_{r, r+1}^{(a)}$ depending only on x_{r}, x_{r+1},

$$
\text { (2.5) } \quad \Phi_{r, r+1}^{(a)}\left(t_{k} ; f_{1}+\cdots+f_{r-1}+1 \leq k \leq f_{1}+\cdots+f_{r+1}\right)
$$

$$
\begin{gathered}
=\Pi_{f_{1}+\cdots+f_{r-1}+1 \leq k \leq f_{1}+\cdots+f_{r+1}} t_{k}^{a_{k}+(m-r-1) \beta+n-f_{1}-\cdots-f_{r+1}} \frac{\left(t_{k} / x_{r}\right)_{\infty}\left(t_{k} / x_{r+1}\right)_{\infty}}{\left(t_{k} q^{\beta} / x_{r}\right)_{\infty}\left(t_{k} q^{\beta} / x_{r+1}\right)_{\infty}} \\
\cdot \Pi_{f_{1}+\cdots+f_{r-1}+1 \leq i<j \leq f_{1}+\cdots+f_{r+1}} \frac{\left(q^{\gamma^{\prime}} t_{j} / t_{i}\right)_{\infty}}{\left(q^{\gamma} t_{j} / t_{i}\right)_{\infty}}\left(t_{i}-t_{j}\right) .
\end{gathered}
$$

Hence the matrix $W_{r}^{(2)}(x)=W_{r}^{(2)}\left(x_{r}, x_{r+1}\right)$ can be written as in (1.13), where n and t_{1}, \ldots, t_{n} should be replaced by $f_{r}+f_{r+1}, t_{f_{1}+\cdots+f_{r-1}+1}, \ldots$, $t_{f_{1}+\cdots+f_{r+1}}$ respectively. In this way we get the one cocycle condition for
 and (1.4) in [1].

References

[1] K. Aomoto and Y. Kato: Gauss decomposition of connection matrices and application to Yang-Baxter equation. I. Proc. Japan Acad., 69A, 238-242 (1993).
[2] -: On connection coefficients for A-type symmetric Jackson integrals (preprint)(to appear in Duke Math. J.).
[3] I. Cherednik: Quantum Knizhnik-Zamolodchikov equations and affine root systems (1992)(preprint).
[4] P. I. Etingof: Quantum Knizhnik-Zamolodchikov equations and holomorphic vector bundles (1993)(preprint).
$[5]$ I. B. Frenkel and N. Y. Reshetikhin: Quantum affine algebras and holonomic q-difference equations. Commun. Math. Phys., 146, 1-60 (1992).
[6] A. Matsuo: Quantum algebra structure of certain Jackson integrals (1992)(preprint).
[7] K. Mimachi: Holonomic q-difference system of the first order associated with the Jackson integral of Selberg type (1992)(preprint).
[8] A. Varchenko: Quantum Knizhnik-Zamolodchikov equations, quantum YangBaxter equation and difference equations for q-hypergeometric functions (1993)(preprint).

[^0]: **) Department bf Mathematics, Meijo University.

