65. On a Conjecture on Pythagorean Numbers. II

By Kei TAKAKUWA and You ASAEDA

Department of Mathematics, Gakushuin University (Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1993)

In [1] we considered the following diophantine equation on l, m, $n \in \mathbb{N}$ (1) $(4a^2 - y^2)^l + (4ay)^m = (4a^2 + y^2)^n$

where $a, y \in \mathbb{N}$, with (a, y) = 1, 2a > y, $y \equiv 3 \pmod{4}$. l is easily seen to be even. If a is odd, then $m \neq 1 \Leftrightarrow n$ is even. If a is even, then both m and n are even. (Cf. [1] Props. 1-3.) In this paper we consider the case y = 3.

Theorem 1. Let a be even, $a = 2^s a_0$, $(s \ge 1)$, $(2, a_0) = 1$. If the diophantine equation on f, g

diophantine equation on f, g
(2)
$$4a^2 + 9 = (2^{s+1}f)^2 + (3g)^2$$

has the unique solution $f = a_0$, g = 1, then (l, m, n) = (2, 2, 2).

Remark. All even a, with (a, 3) = 1, $2 \le a \le 152$, except 14, 46, 52, 62, 118, 142, 148, satisfy the above condition.

Proof. As l, m, n are even, put l = 2l', m = 2m', n = 2n' and $(4a^2 + 9)^{n'} + (4a^2 - 9)^{l'} = A$, $(4a^2 + 9)^{n'} - (4a^2 - 9)^{l'} = B$. Then it is proved in [1] that the possibility on choice of A, B in

$$2^{2m}3^ma^m = AB$$

is only the following:

$$A = 2^{m(2+s)-1}b^m$$
, $B = 2 \cdot 3^m c^m$,

where $a_0 = bc$, (b, c) = 1, hence l' is odd. (Cf. [1].) If n' is even, then from $A = 2^{m(2+s)-1}b^m$, we have $8 \equiv 0 \pmod{16}$, which is a contradiction. Thus n' is odd, too.

$$(A+B)/2 = (4a^2+9)^{n'} = (2^{m'(2+s)-1}b^{m'})^2 + (3^{m'}c^{m'})^2.$$

(4) $(4a^2+9)^{n'}=(2^{m'(2+s)-1}b^{m'}+3^{m'}c^{m'}i)(2^{m'(2+s)-1}b^{m'}-3^{m'}c^{m'}i).$ Put $F=2^{m'(2+s)-1}b^{m'}+3^{m'}c^{m'}i$, $G=2^{m'(2+s)-1}b^{m'}-3^{m'}c^{m'}i$. Then 1=(F,G), as (b,c)=(b,6)=(c,6)=1. Therefore there exist integers f_0,g_0 such that $(f_0,g_0)=1$, $F=(f_0+g_0i)^{n'}$, hence $4a^2+9=f_0^2+g_0^2$. By Lemma 1, which we prove below, we have $3\mid g_0,2^{m'(2+s)-1}\mid f_0$, so $2^{s+1}\mid f_0$. By the assumption we have $f_0=2a$, $g_0=3$. Since $2^{m'(2+s)-1}\mid 2a$, m'(2+s)-1=s+1. Thus m'=1, so m=2. Then $A=(4a^2+9)^{n'}+(4a^2-9)^{n'}=2^{2(2+s)-1}b^2\leq 2^{2(2+s)-1}a_0^2=8a^2=(4a^2+9)+(4a^2-9)$. Therefore n'=l'

Lemma 1. Let a be even and a_0 , s, b, c, m', n', F, G as above. If integers f, g with (f, g) = 1 satisfy $4a^2 + 9 = f^2 + g^2$ and $2^{m'(2+s)-1}b^{m'} + 3^{m'}c^{m'}i = (f+gi)^{n'}$, then $2^{m'(2+s)-1}\|f, 3\|g$.

Proof.

= 1. Thus (l, m, n) = (2, 2, 2).

$$(f+gi)^{n'} = \sum_{j=0}^{(n'-1)/2} {n' \choose 2j} f^{n'-2j} (-1)^j g^{2j} + ig \sum_{j=0}^{(n'-1)/2} {n' \choose 2j+1} f^{n'-(2j+1)} (-1)^j g^{2j}.$$

Therefore

(i)
$$2^{m'(2+s)-1}b^{m'} = f \sum_{j=0}^{(n'-1)/2} {n' \choose 2j} f^{n'-(2j+1)} (-1)^j g^{2j}$$
,

(ii)
$$3^{m'}c^{m'} = g \sum_{j=0}^{(n'-1)/2} {n' \choose 2j+1} f^{n'-(2j+1)} (-1)^j g^{2j}$$
.

Since $f^2 + g^2 = 4a^2 + 9$ is odd, $f \not\equiv g \pmod{2}$. Then g is odd and f is even from (ii). Therefore $\sum_{j=0}^{(n'-1)/2} {n' \choose 2j} f^{n'-(2j+1)} (-1)^j g^{2j}$ is odd, hence we have $2^{m'(2+s)-1} \| f \text{ from (i)}.$

Assume $3 \mid f$, then from (ii), $3 \mid g$, which contradicts the assumption (f, g) = 1. Therefore $3 \ \text{l. As} \ 3 \ \text{l. As} \ 3 \ \text{l. a.}$ too, $a^2 \equiv f^2 \equiv 1 \pmod{3}$. Hence $g^2 = -f^2 + 4a^2 + 9 \equiv 0 \pmod{3}$. Thus $3 \mid g$.

Theorem 2. Let a be a square free odd integer. If the class number of k = $Q(\sqrt{-3a})$ is a power of 2, then (l, m, n) = (2, 2, 2).

Remark. All square free odd a, with $(a, 3) = 1, 5 \le a \le 97$, except 29, 43, 53, 67, 77, 79, 83, 85, satisfy the class number condition. (Cf. [2].) *Proof.* Suppose that n is odd. Then m = 1.

Case (i) $a \equiv 3 \pmod{4}$: As $a \neq 3$ we have $a \geq 7$. Put l = 2l'. Clearly $n \geq 3$. From (1)

$$((4a^2 - 9)^{1'} + 2\sqrt{-3a})((4a^2 - 9)^{1'} - 2\sqrt{-3a}) = (4a^2 + 9)^n.$$

Since $a \equiv 3 \pmod{4}$, $\mathfrak{D}_k = \mathbf{Z}[\sqrt{-3a}]$, where \mathfrak{D}_k is the principal order of k. Put $\omega = \sqrt{-3a}$. Let \mathfrak{a} be an ideal of \mathfrak{D}_k generated by $(4a^2 - 9)^{l'}$ + 2ω , then $((4a^2-9)^{l'}-2\omega)=\bar{a}$. If $(a,\bar{a})\neq 1$, then there exists a prime ideal \mathfrak{p} such that $\mathfrak{p} \supseteq \mathfrak{a}$ and $\mathfrak{p} \supseteq \bar{\mathfrak{a}}$, hence $2(4a^2 - 9)^{l'} \in \mathfrak{p}$. As $2 \notin \mathfrak{p}$, $4a^2 9 \in \mathfrak{p}$. Moreover $\mathfrak{p} \supseteq a\bar{a} = (4a^2 + 9)^n$, then $4a^2 + 9 \in \mathfrak{p}$, hence $a \in \mathfrak{p}$, $3 \in \mathfrak{p}$ \mathfrak{p} . This contradicts (a, 3) = 1. Therefore $(\mathfrak{a}, \bar{\mathfrak{a}}) = 1$. Hence $\mathfrak{a}\bar{\mathfrak{a}} = (4a^2 +$ 9)ⁿ means $\mathfrak{a} = \mathfrak{a}_0^n$, where \mathfrak{a}_0 is an ideal of \mathfrak{D}_k . By the assumption on the class number of k, \mathfrak{a}_0 is principal as n is odd. The units of \mathfrak{D}_k are $\{\pm 1\}$, thus $(4a^2-9)^{l'}+2\omega=(\pm x\pm y\omega)^n$,

$$(4a^{2}-9)^{l'}+2\omega=(\pm x\pm y\omega)^{n'},$$

where $x, y \in \mathbb{N}$, $4a^2 + 9 = x^2 + 3ay^2$. Since y divides the imaginary part of $(\pm x \pm y\omega)^n$, y divides 2, so y = 1 or 2.

Case (i-1)
$$y = 1$$
: By $4a^2 + 9 = x^2 + 3a$
 $9a = (x + 2a - 3)(x - 2a + 3)$.

If $(x+2a-3, x-2a+3) \neq 1$, then a prime p divides both x+2a-3and x-2a+3. Hence we have $p \mid 2(2a-3)$, $p^2 \mid 9a$. This contradicts the assumption (a, 3) = 1. Thus (x + 2a - 3, x - 2a + 3) = 1. As x + 2a - 33 > 2a, hence $x + 2a - 3 = 9a_1$, where $a = a_1a_2$ with $(a_1, a_2) = 1$. Then $9a_1 > 2a = 2a_1a_2$, so $9 > 2a_2$. Since a_2 is odd with $(a_2, 3) = 1$, we have $a_2 = 1$. Therefore 2(2a - 3) = 9a - 1, that is, a = -1, which is a contra-

diction. Thus case (i-1) does not occur.

Case (i-2) y = 2: By $4a^2 + 9 = x^2 + 12a$, we have x = 2a - 3. Thus $(4a^2 - 9)^{l'} + 2\omega = (\pm (2a - 3) \pm 2\omega)^n$ $=\sum_{i=0}^{(n-1)/2} {n \choose n-2i} (\pm (2a-3))^{n-2i} (-12a)^{i}$

$$\pm 2\omega \sum_{j=0}^{(n-1)/2} {n \choose n-2j-1} (\pm (2a-3))^{n-2j-1} (-12a)^{j}.$$

So

$$\pm (2a-3)^{l'-1}(2a+3)^{l'} = \sum_{i=0}^{(n-1)/2} {n \choose n-2i} (2a-3)^{n-2i-1} (-12a)^{i}.$$

By Lemma 2, which we prove later, we have l'=1, i.e. l=2. Therefore $(4a^2-9)^2+12a=(4a^2+9)^n$.

Such n does not exist. Thus (i-2) does not occur, either.

Case (ii) $a \equiv 1 \pmod{4}$: Since $a \equiv 1 \pmod{4}$, $a \geq 5$ and $\mathfrak{D}_k = \mathbf{Z}[(1 + 1)]$ $(4a^2 - 9)^{l'} + 2\omega)((4a^2 - 9)^{l'} - 2\omega) = (4a^2 + 9)^n$.

$$((4a^2 - 9)^{l'} + 2\omega)((4a^2 - 9)^{l'} - 2\omega) = (4a^2 + 9)^n.$$

By the assumption on the class number, we have easily, noticing that the ideal in \mathfrak{D}_k generated by $(4a^2-9)^{l'}+2\omega$ can not be divisible by prime factor of 2,

 $(4a^2 - 9)^{l'} + 2\omega = ((\pm x \pm y\omega)/2)^n$ (5) where $x, y \in \mathbb{N}$, $x \equiv y \pmod{2}$, $4a^2 + 9 = (x^2 + 3ay^2)/4$. From (5) we have

(6)
$$2^{n}(4a^{2}-9)^{l'}+2^{n+1}\omega=(\pm x\pm y\omega)^{n}.$$

Since y divides the imaginary part of $(\pm x \pm y\omega)^n$, y divides 2^{n+1} , so y=1or $y = 2^t$, $(t \in N)$.

Case (ii-1)
$$y = 1$$
: Then x is odd and $16a^2 + 36 = x^2 + 3a$. Thus
$$45a = (x + 4a - 6)(x - 4a + 6).$$

If $(x+4a-6, x-4a+6) \neq 1$, then a prime p divides both x+4a-6and x - 4a + 6. Hence we have $p \mid 4(2a - 3), p^2 \mid 45a$. Since (a, 3) = 1, this is a contradiction. Hence (x + 4a - 6, x - 4a + 6) = 1. Now x + 4a-6 > 4a. Put c = x + 4a - 6. Then there are six possibilities on choice of c in (7): (7.1) c = 45a, (7.2) c = 9a, (7.3) c = 5a, (7.4) $c = 9a_1$, (7.5) c = 6a $5a_1$, (7.6) $c = 45a_1$, where $a = a_1a_2$ with $(a_1, a_2) = 1$, $a_2 \neq 1$.

As x - 4a + 6 = 45a/c, 8a - 12 = c - 45a/c. Hence (7.1)-(7.3) contradict $a \ge 5$. As $c > 4a = 4a_1a_2$, and a_2 is odd, neither (7.4) nor (7.5) occurs. In case (7.6), as $(a_2, 3) = 1$, $a_2 = 5.7$ or 11. No one of these satisfies $8a_1a_2 - 12 = 45a_1 - a_2$ with integer a_1 . Thus (ii-1) does not occur.

Case (ii-2) $y=2^t$, $t\in N$. As x is even, put $x=2x_0$. Then $4a^2+9=x_0^2+3\cdot 4^{t-1}a$. Assume $t\geq 2$, then x_0 is odd. If $x_0=1$, $a^2-3\cdot 4^{t-2}a+2=$ 0. As a is odd, t=2, a=1, which is a contradiction. (a, 3)=1, then $x_0 \neq 3$. We put $x_0=3+2u$, $u \in N$. Then $a^2=u^2+3u+3\cdot 4^{t-2}a$, so $1\equiv 4^{t-2}\pmod 2$. Hence t=2, $4a^2+9=x_0^2+12a$. In (i-2) we have proved this is impossible. Thus t=1, y=2, so $4a^2+9=x_0^2+3a$. This case is treated in (i-1) and is also impossible. Thus (ii-2) does not occur, either. Hence n is even. Then $m \neq 1$. Therefore (l, m, n) = (2, 2, 2). (Cf. [1] Prop. 1, Theorem 1.)

Lemma 2. Let $a \ge 5$ be odd with (a, 3) = 1 and n odd with $2l' > n \ge 3$. Ιf

(8)
$$\pm (2a-3)^{l'-1}(2a+3)^{l'} = \sum_{j=0}^{(n-1)/2} {n \choose n-2j} (2a-3)^{n-2j-1} (-12a)^j,$$

then l'=1.

Proof. Assume $l' \neq 1$. Put 2a - 3 = c.

$$\pm c^{l'-1}(2a+3)^{l'} = c^2 \sum_{j=0}^{(n-3)/2} {n \choose n-2j} c^{n-2j-3} (-12a)^j + n(-12a)^{(n-1)/2},$$
 so $c \mid n(-12a)^{(n-1)/2}$. $(c, a) = (c, 6) = 1$, we have $c \mid n$. $2l' > n \ge c \ge 7$, we have $l' \ge 4$. By induction on t , we shall prove that c^t divides n , where t is any odd integer. As such n does not exist. l' must be 1.

is any odd integer. As such n does not exist. l' must be 1. Let $t \ge 3$ and $c^{t-2} \mid n$. $2l' > n \ge c^{t-2} \ge 2t+1$, hence left hand side of (8) is divisible by c^t . Let s be odd with $3 \le s \le t$. Now

$$\binom{n}{s} = \frac{n}{s} \binom{n-1}{s-1}, \quad \binom{n-1}{s-1} \in N.$$

If (c, s) = 1, $c^{t-2} \left| \binom{n}{s} \right|$. Hence, $c^t \left| \binom{n}{s} c^{s-1} \right|$. If $(c, s) \neq 1$, let $s = s_0 \Pi_i$, $p_i^{e_i}$, where each p_i is a prime divisor of c and $(c, s_0) = 1$. As $s - 1 - e_i \geq 2$, c^2 divides $c^{s-1}/\Pi p_i^{e_i}$. Hence $c^t \left| \binom{n}{s} c^{s-1} \right|$. Thus c^t divides all terms of (8) except $n(-12a)^{(n-1)/2}$, hence $c^t \mid n$.

References

- [1] K. Takakuwa and Y. Asaeda: On a conjecture of Pythagorean numbers. Proc. Japan Acad., 69A, 252-255 (1993).
- [2] H. Wada and M. Saito: A table of ideal class groups of imaginary quadratic fields. Sophia Kokyuroku in Math., 28, Sophia Univ. Press (1988).