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65. On a Conjecture on Pythagorean Numbers. II

By Kei TAKAKUWA and You ASAEDA

Department of Mathematics, Gakushuin University
(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1993)

In [1] we considered the following diophantine equation on I, m, n € N
(1) (4a® — y»' + (day)”™ = 4a® + y>)"
where a, y € N, with (a,y) =1,2a >y, y= 3 (mod4). [ is easily seen to
be even. If a is odd, then m # 1 < #n is even. If @ is even, then both m and #
are even. (Cf. [1] Props. 1-3.) In this paper we consider the case y = 3.

Theorem 1. Let a be even, a= 2a, (s=1), (2,a,) = 1. If the
diophantine equation on f, g
(2) 4a’ + 9 = 2)* + (3g)?
has the unique solution f = a,, g = 1, then (I, m, n) = (2, 2, 2).

Remark. All even a, with (a,3) =1, 2 < a < 152, except 14, 46,
52,62, 118, 142, 148, satisfy the above condition.

Proof. As I, m, n are even, put [ = 2I', m = 2m’, n = 2n’ and (4a” +
9)" + (4a®— 9" = A, Ua®*+ 9" — (4a° — 9)" = B. Then it is proved
in [1] that the possibility on choice of A, B in
(3) 2"3"a" = AB
is only the following:

A= 2m(2+s)—1bm’ B = 2_3mcm,

where a, = bc, (b, ¢) =1, hence I’ is odd. (Cf. [1].) If #" is even, then from
A= 2" " e have 8 = 0 (mod 16), which is a contradiction. Thus #’
is odd, too.

(A+ B)/2 = (4d* + 9" = @"*97™)? + (3" ™)*.
So
(4) (4(12 + g)n’ — (2m’(2+s)—1bm’ + 3m’cm’i) (2m’(2+s)~1bm’ - Sm’cm’i).
Put F=2"""7" 43" ™, 6 =2"" """ — 3" ¢™i Then 1= (F, G),
as (b, ¢) = (b, 6) = (¢, 6) = 1. Therefore there exist.integers f,, g, such
that (fy, g) =1, F = (f, + g®)", hence 4a° + 9 = f;’ + g,’. By Lemma 1,
which we prove below, we have 3| g, | fo SO 2°1| fo. By the
assumption we have f, = 2a, g, = 3. Since 2" og m(2+s) —1=
s+ 1. Thus m' =1, so m=2. Then A= (4a° + 9" + 4a°*—9)" =
22C*O7IpE < 92O, 2 = 8a® = (4a® + 9) + (4a® — 9). Therefore ' = I’
= 1. Thus (I, m, n) = (2, 2, 2).

Lemma 1. Let @ be even and a,, s, b, ¢, m’, w', F, G as above. If inte-
gers f, g with (f, @ =1 satisfy 4a°+9 =f>+ g° and 2" *"27p" +
3Vc™i= (f+ g)”, then 2" 07V £, 3] .

Proof.

, n'-1)/2 ’ w2 o . 0 -1)/2 ’ w2 ) .
(f—-|- gi)" - Zo <g]>f 2!(__ l)JgZJ + ig ZO <2]7:l|_ ) )f (21+1)(_ 1)’g2’.
j= j=
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Therefore
() 2" eI = f‘”"zl:)/z ( n,'>fn’-(2j+l)(__ 1)/g?,
j=0  \2j

(n"=1)/2 n/

.. m’ m’ __ n —(2j+1) _ J 25
(i) 3"¢ g ;E) 2].+1>f (— D'g”.
Since f2+ g° = 4a® + 9 is odd, f # g(mod 2). Then g is odd and f is even

from (ii). Therefore ;’:0_1)/2 (;Z.)fn,_(zf“)(— 1)’g” is odd, hence we have

2m’(2+s)—1 "f from (l)

Assume 3| f then from (ii), 3| g, which contradicts the assumption
(f, & = 1. Therefore 34 f As 34 a, too, @’ = f>= 1(mod 3). Hence
g’=—f*+4a*>+ 9 =0(mod3). Thus 3| g.

Theorem 2. Let a be a square free odd integer. If the class number of k =
QG/— 3a) is a power of 2, then (I, m, n) = (2, 2, 2).

Remark. All square free odd @, with (@, 3) = 1,5 < a < 97, except
29, 43, 53, 67, 77, 79, 83, 85, satisfy the class number condition. (Cf. [2].)

Proof. Suppose that # is odd. Then m = 1.

Case (i) a = 3 (mod4) : As @ # 3 we have a = 7. Put I = 2/’. Clearly
n = 3. From (1)

(4a® — 9" + 2= 3a) (4a’ — 9)" — 2/= 3a) = (4d" + 9)".

Since @ = 3 (mod 4), O, = Z[y— 3al, where D, is the principal order
of k. Put w = y— 3a. Let a be an ideal of O, generated by (4a® — 9" +
2w, then ((4a® — 9)" — 2w) = a. If (a, @) # 1, then there exists a prime
ideal p such that p 2 a and p = @, hence 2(4a”° — 9)" € p. As 2 €p, 4a° —
9 € p. Moreover p 2 ad = (4a® + 9)" then 4a* + 9 € p, hence a € p, 3 €
p. This contradicts (a, 3) = 1. Therefore (a, @ = 1. Hence aa = (4a’ +
9)" means a = a,", where a, is an ideal of ©,. By the assumption on the class
number of k, a, is principal as # is odd. The units of O, are {£ 1}, thus

(4a" — 9" + 20 = (+ x £ yw)",

where z, y € N, 4a® + 9 = 2° + 3ay’. Since y divides the imaginary part
of (x x + yw)", y divides 2, soy = 1 or 2.

Case (i-1) y = 1: By 4a” + 9 =z + 3a

9a = (x+ 2a— 3)(x— 2a+ 3).

If (x+ 2a — 3, x— 2a+ 3) # 1, then a prime p divides both x + 2a — 3
and x — 2a + 3. Hence we have p|2(2a — 3), p°| 9a. This contradicts the
assumption (@, 3) =1. Thus ¢+ 2¢—3,x—2a+3) =1 Asxz + 2a —
3 > 2a, hence x + 2a — 3 = 9a,, where a = a,a, with (a,, a,) = 1. Then
9a, > 2a = 2a,a,, so 9 > 2a,. Since a, is odd with (@, 3) = 1, we have
a, = 1. Therefore 2(2a — 3) = 9a — 1, that is, a = — 1, which is a contra-
diction. Thus case (i-1) does not occur.

Case (i-2) y = 2: By 4a° + 9 = x* + 124, we have x = 24 — 3. Thus
(4a* — 9" + 20 = (£ (2a — 3) + 20w)"

_ (n—=1)/2 n _ n-2i, _ j
="20(, 2 y) Fea- e 120
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+ o S ( _ 1) (£ 2a — 3)"# (- 120)".

im0 \nm— 2] —
So
. ,  m=D/2 zie .
+@a—9""ea+3" =2 (" ) @a—3"""(~ 120,
=0 n—2j

By Lemma 2, which we prove later, we have I’ = 1, i.e. [ = 2. Therefore
(4d® — 9° + 12a = (4d° + 9)".
Such # does not exist. Thus (i-2) does not occur, either.

Case (ii) @ = 1(mod 4) : Since @ = 1 (mod 4), a = 5 and O, = Z[(1 +

w) /2], where w = y/— 3a. From (1)

(4d” — 9" + 20) (4d* — 9" — 20) = (4’ + 9)".
By the assumption on the class number, we have easily, noticing that the
ideal in O, generated by (4a” — 9)” + 2w can not be divisible by prime fac-
tor of 2,
(5) (4a* — 9" + 20 = (£ 2 *+ yw) /2)"
where z,y € N, x = y(mod 2), 44> + 9 = (z® + 3ay®) /4. From (5) we
have
(6) 2"(4a* — 9" + 2w = (£ z + yw)".
Since y divides the imaginary part of (£ x * yw)”, y divides 2" so y=1
ory =2 (t€ N).

Case (ii-1) y = 1: Then z is odd and 164 + 36 = x” + 3a. Thus

(7) 45a = (x + 4a — 6)(x — 4a + 6).
If (x+4a— 6, x— 4a + 6) # 1, then a prime p divides both x + 4a — 6
and x — 4a + 6. Hence we have p|4(2a — 3), p*| 45a. Since (a, 3) =1,
this is a contradiction. Hence (x + 4a — 6, x — 4a + 6) = 1. Now x + 4a
— 6 > 4a. Put ¢ = x + 4a — 6. Then there are six possibilities on choice of
¢ in (7): (7.1) ¢ = 45a, (7.2) ¢ = 9a, (7.3) ¢ = 5a, (7.4) ¢ = 9a,, (7.5) ¢ =
5a,, (7.6) ¢ = 45a,, where a = a,a, with (a,, a,) =1, a, # 1.

As x—4a+ 6 =45a/c, 8a — 12 = ¢ — 45a/¢c. Hence (7.1)-(7.3)
contradict @ = 5. As ¢ > 4a = 4a,a,, and a, is odd, neither (7.4) nor (7.5)
occurs. In case (7.6), as (@,, 3) =1, a, = 5,7 or 11. No one of these satis-
fies 8a,a, — 12 = 45a, — a, with integer a,. Thus (ii-1) does not occur.

Case (ii-2) y = 2/ t€ N. As x is even, put £ = 2x, Then 4a°+ 9 =
2+ 3-4"'a. Assume ¢ > 2, then z, is odd. If z, =1, a° — 3-4"%a + 2 =
0. As ais odd, t = 2, @ = 1, which is a contradiction. (@, 3) = 1, then x, #*
3. We put z, = 3 + 2u, # € N. Then d=u"+3u+34"% s0l1=4""?
(mod 2). Hence t = 2, 4a° + 9 = x2 + 12a. In (i-2) we have proved this is
impossible. Thus t=1, y = 2, so 4a° +9 = xoz + 3a. This case is treated
in (i-1) and is also impossible. Thus (ii-2) does not occur, either. Hence # is
even. Then m # 1. Therefore (U, m, n) = (2, 2, 2). (Cf. [1] Prop. 1,
Theorem 1.)

Lemma 2. Let a =5 be odd with (a, 3) =1 and n odd with 21" > n = 3.

iy
® +tCa—3"Ca+d =3 (") @a—9"" (- 120,
n— 2

i=0
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thenl’ = 1.
Proof. Assume I” # 1. Put 2a — 3 = c.
i i (n—3)/2 i -
£ @a+a =% (" 2].) (= 120) + n(— 12007,
j=0 -
so ¢|n(—=120)" "% (c,a) = (c,6) =1, we have ¢|n. 2I' >n = ¢ > 17,
we have I’ > 4. By induction on #, we shall prove that ¢’ divides #, where ¢
is any odd integer. As such # does not exist. /” must be 1.
Let t =3 and ¢ 2| n. 21" > n = ¢ = 2¢t+ 1, hence left hand side of
(8) is divisible by ¢’. Let s be odd with 3 < s < t. Now

(5)=50G20) (G21)ew

If (c,s) =1, c? <Z> Hence, ¢’ | (Z)cs_l. If (c,s) #1, let s=s,1I,

pi', where each p; is a prime divisor of ¢ and (¢, s)) = 1. As s —1—¢, =2,

2 .. -1 : t
¢’ divides ¢* /I p;'. Hence ¢

<’s’> ¢ Thus ¢’ divides all terms of (8)

except n(— 12a) “ "”* hence ¢ | n.
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