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1. Introduction. Let A denote the set of functions f(2) = z + 2,_, a,z"
that are analytic in E = {z:|z| < 1}. A function f(2) € A is called strong-
ly starlike of order 8, 0 < B8 = 1, if | arg(zf'(2) /f(2)) | < #8/2 in E.

Let us denote STS(B) the class of all functions which satisfy the above
conditions. On the other hand, a function f(2) € A is called strongly convex
of order 8,0 < B=1,if |arg(l + 2f"(2) /f'(2)) | < /2 in E.

Let us denote STC(B) the class of all functions which satisfy the above
conditions.

Mocanu [1, Corollary 1] obtained the following result.

If f(2) € A and
‘ (1+zf”(2))|< S inE,

(@
then
zf ' (2)
l @ |<
where Les
Ty 7B 8 1 — B\
Tan -+ = Tan— +
2 2 1 - B co /8 <1+B>
and0<,8<1.

In this paper, we will prove the following theorem.
Main theorem. Let f(z) € STC(a(B)). Then we have f(2) € STS(B),

where

Bq(B) sm (1 o))

p(B) + Bg(pB) cos 5 1-5
28 = A+ B and q® = 1 — pF

2. Preliminaries. To prove the main theorem, we need the following
lemma.

Lemma. Let p(2) be analytic in E, p(0) = 1, p(2) # 0 in E and suppose
that there exists a point 2, € E such that

T
largp() | < 5= for|z] <]zl

aB) =5+ %—Tan—l

and

|arg p(zy) | = %cﬁ
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where 0 < a. Then we have

20’ (2,) .
G tka
whevre
1 1 T
k= 5 (a + E) when arg p(z,) = 5
and
1 1 T
ks —% (a + Z) when arg p(z,) = — >
where

ﬁ(zo)l/a = *+ {a, and a > 0.
Proof. Let us put
q(2) = p(@"".
Then we have
Re q(z) > 0 for | z| < | 2,
and
Re ¢(z,) = 0.
Let us put g(z,) = * ia, @ > 0 and applying Nunokawa's result [2], we
have .
20 @) _ 12" @pGE)T _ 1 2’z _
(I(ZO) T a p(zo)l/a T a p(zo) =1

where k is a real and

and
1 1 .
ké——2-<a+—a—> for g(z)) = — 1a.

3. Proof of the main theorem. Let us put p(2) = zf'(2) /f(2) and
f(2) € STC(a(@)).

If there exists a point 2z, € E such that
T
largp@ | <2 for | 2] <z

and

largp(a) | =2, ©<p<D.

Putting
g2 = p"",

then we have
Re q(2) > 0 for | z| < | z,|,
Re g(z)) = 0 and q(2) = * ia
where a is a positive real number.
Then, from the lemma, we have
2’ (2) .
pGp Pk
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where k is a real number

k= % (a + i—) when ¢(z,) = ia
and
k= ——;—(a-l——tl;) when q(z,) = — ia
where q(z,) = p(2,)"® = * ia and a is a positive real number.
At first, let us suppose q(z,) = i@, a > 0, then we have
zf "(2)) _ 200" (2,)
e G~ PG 7y
= pg)(1 + = (i@)" (1 + Bk
° < p(2,)? > ( a)5>

iZ8 iZ(1—
= ag®e'2 {1 + ¢2¢ B)Bk—g]
a

1 1
where k 2 5 <a + E)'
Then we have
Bk 2 s o,

Let us put

gla) = % @+ a"® anda > 0.
Then, by easy calculation, we have

1 _ —ae
g@=5{1-pa’—a+pa’™?,

and g(a) takes the minimum value ata =v(@ + B) /A — ).
Therefore, we have

arg(l + %) = argp(z) + arg(l +

T, iT (1 k
= —23-+ arg(1 4 iFu-e i_ﬁ)

2’ (2,) )
p(z)°

-1 <1“%,8> (%)1_?1 sin-% 1-p)

= —— + Tan
2 B 1—B\% T
1+ (m)(m) cos 5 (1 — B)
Bg(B) sin 5 (1 — B)
7[‘8 + Tan™ - 2
pB + Bg(B) cos 5 Za- ,8)

This contradicts the assumption of the main theorem.
For the case ¢(z)) = — ia, a > 0, applying the same method as the
above, we have
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zf“% B _ o Ba(B) sing (1 — p)
=22 ) < ——= — Tan )
[ () 2 (B + Bg(P) cos % 1-p

This contradicts the assumption. Therefore we complete the proof.

Putting 8 = 0.5 in the main theorem, we have the following result:
If f(z2) € STC(«x(0.5)), then we have

zf ' (2) T
‘arg @ ‘<z in E

arg(l +

where

1

174

a(0.5) = 0.5 + 3Tam‘l————
T 108" + 1

= 0.648.
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