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Introduction. Let A=(a,,); ,c; be a real nXn matrix satisfying the
following conditions:

(C1) either a,,=2 or a,,<0;

(C2) @,,<0ifi+j, and a,,¢ Z if a,;=2;

(C3) a,;=0 implies a,,=0.

Such a matrix is called a generalized GCM (=GGCM). And let g(A) be
the generalized Kac-Moody algebra (=GKM algebra), over the complex
number field C, associated to the above GGCM A. Then, we have the
root space decomposition: g(4)=H1D> % ,q,, where § is the Cartan sub-
algebra, and 4 the root system of (g(4),5). Let J be a subset of I"*:=
{iella,,=2}. And put nj:=3 %, Gew U 1= sty Gua Mi=1;OHON],
where 45 :=4N> e, Zogty, 4°(J):=4%\47. In this paper, we study the
homology H,(u-, L(A4)) of u- and the cohomology H'(u*, L(4)) of u* with
coefficients in the irreducible highest weight g(A)-module L(/4) with highest
weight 4€H*. And we prove “Kostant’s homology and cohomology theo-
rem” for symmetrizable GKM algebras associated to GGCMs satisfying
the following condition (C1) instead of (C1) above:

(Cl) either a,,=2 or a,,=0.

This result is a generalization of Kostant’s Theorem for Kac-Moody
algebras, which was proved by J. Lepowsky and H. Garland ([2] and [5]),
or the classical result of B. Kostant himself [4] for finite dimensional
complex semi-simple Lie algebras.

§ 1. Preliminaries for GKM algebras. We prepare some basic re-
sults for GKM algebras which will be needed later. For details, see [1]
and [3]. Let g(4) be the GKM algebra associated to a GGCM A4, with the
Cartan subalgebra Y, simple roots I7={a;},.;, and simple co-roots I7V=
{ai}ic;- From now on, we always assume that the GGCM A=(a,,), ¢, is
symmetrizable, and that J is a subset of I"*={ieI|a;;=2}. We call an
h-module V h-diagonalizable if V admits a weight space decomposition :
V=3 %ew Vi where P(V) is the set of all weights of V.

Definition ([6]). ), is the category of all m-modules whose objects V
satisfy the following :

(1) V isbh-diagonalizable;

(2) the weight space V, is finite dimensional for all e P(V);

(3) there exist a finite number of elements 2, (1<i<s) in H*:=
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Hom((h, C) such that P(V)clJi.,D(@,), where D(,):={1,—8|Bec@Q, =
2ager Zooogt (1<i<s).

(4) Viewed as an m-module, V is a direct sum of irreducible highest
weight m-modules L,(2). with highest weight 1€ P} :={ue bt*|{p, a}> € Z,,
(i e )}

Note that the category ©, is closed under the operations of taking
submodules, quotients, and finite direct sums. Moreover, a tensor prod-
uct of a finite number of modules from ©; is again in the category ¢,,
due to [3, Theorem 10.7 b)].

The following proposition plays a fundamental role in this paper.

Proposition I ([6]). Let Ae P*:={2e§*|{R, ay>>0 (i€ ), and (2, a)>
€Z.oif a;,,=2}. Then, L(4) and (N\'u")Q@¢ L(A) (7>0) are in the category
O;, where N'u- is the exterior algebra of degree j over u- (>0), and is
an m-module by the adjoint action since [m,u-]Cu-.

Now, we introduce the algebra &; of “formal m-characters” of m-
modules from the category ©,. The elements of £, are series of the form
2 e ¢,e.(), where ¢, e C and ¢,=0 for 2 outside a finite union of the sets
of the form D(u) (v € b*). Here, the elements e, (1) are called formal m-
exponentials. They are linearly independent and are in one-one corre-
spondence with the elements 1€ Pj;.

For a module V in the category ©,, we define the formal m-character
ch,V of V by ch,V:=>, P} [V:L,2le,(2), where [V: L,(2)] is the “multi-
plicity” of L,(2) in V (see [3, Ch. 9, Lemma 9.6]). Note that, for a module
V in the category ©,, [V: L, (2] (A€ P3}) is finite and so ch,V is an ele-
ment of the algebra &,. Then, the multiplication of &£, is defined by
e.(D - e, () :=ch, (L, L, () (4, p € P;). Thus, & becomes a commuta-
tive associative algebra over C.

Especially when J=¢, the algebra &; is nothing but the algebra & in
[3, Ch. 9], since in this case m=Y, P;=0*, and e,(D)=e(Q) (1e P;=5*).
Now, let (-|-) be a fixed standard bilinear form on §*, II'™ (resp. I1™°) be
the subset {«; € /l|a,,<0 (resp. a,,=2)} of 7I, and W GL(H*) be the Weyl
group generated by the fundamental reflections r, defined by «, ¢ I17°.
And let © be the set of all sums of distinet pairwise perpendicular ele-
ments, with respect to (- |-), from /I*". Note that {0} UII'™ is contained
in ©. Then, we know the following character formula.

Theorem I ([1] and [3]). Let AeP* and &(A):={1eS|l|H=0}.
And we put

SA : =e(/1—|—p) . Zﬁe@(/i) 5(,3)6("/3), R:= n acdy (1’_6(“’05))“‘“1“0‘),
where f=(—1" if feS is a sum of m elements from II'™, pebh* is a
fixed element such that {p,ay>=(1/2)-a, (Gel), and mult(x):=dim.g,
(ee d*). Then, there holds in the algebra &=E&,,

e(P) ‘R.ch L(A)= Zwew (det w)w(S,),
with w(e(w)) :=e(w(p)) (1 h*).
Corollary 1 ([1] and [3]). We put S:=e(p)-> scsc(Pe(—p). Then,
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e(p) - R=3",cw (det w)w(S).

Remark 1.1. The above statement of Theorem I (resp. Corollary I) is
the corrected version of Theorem 11.13.3 (resp. Corollary 11.13.2) in [3].

§ 2. Homology and cohomology of GKM algebras. In this section,
we will review the notion of homology and cohomology of Lie algebras.
Let L(4) be the irreducible highest weight g(A4)-module with highest
weight 4 € P*. Then, the vector space C/(u*, L(A4)) of j cochains is defined
by C'(u*, L(M) :=Homg (/\’u*, L(4)), and is an m-module in a usual sense
(7=0). Here, for h-diagonalizable modules V=3 .V, and W=3>2..W,
with finite dimensional weight spaces, we put

Homg (V, W) :={f e Hom(V, W)| f(V,)=0 for all but finitely
many weights 2¢ b* of V3.
The coboundary operator d’: C'(u*, L(4)—C!*'(u*, L(A)) is defined by
@rH@/N\--- /\xj/\xjn):32{:11(—‘1)1;%1(.](‘(%1/\ e AZ N /\x“,))

SR INPTIIIRY Cob § LAl i (AN VAV WARRIAY AVARRRWANY WA AY S B
where 2, -- -, 2,,,eu’, f e C/(u*, L(4)), and the symbol £, indicates a term
to be omitted. The cohomology of this complex {C/(u*,L(A4)), d’},., is
called the j** cohomology of u* with coefficients in I{4), and is denoted by
Hi(u*, L(4)). Then, H'(u*, L(4)) is also an ni-module, since the coboundary
operator d’ commutes with the action of m.

For the homology, we define the vector space C,;(u-, L(A4)) of j chains
to be Au-®; L(4), which is an m-module in a usual sense (j>0). The
boundary operator d,: C,(u-, L(4)—C,_,1~, L(A) is defined by

AN\ - ANYQV) =2 (=DM - NG ANYPRY(v)
+ler<tgj (_ 1)7” ([yn yt]/\yl/\ ce /\'yr/\ Tt /\yAt/\ ce A?/j)@'v,
where y;, -+, y,eu”, ve L(4). And we have the similar situation as in
the case of cohomology.

Remark 2.1. In this paper, the cohomology Hi(u*, L(A)) of u* is
different from the usual one, since we have used Hom{ (A’u*, L(4)) in-
stead of Hom, (Au*, L(A)) as Ci(u*, L(4)) (=>>0).

§ 3. Kostant’s Theorem for GKM algebras. Let g(4) be the GKM
algebra associated to a symmetrizable GGCM A =(a,,), ;c;- For a subset J
of Ie, we put A, :=(a,;);,;cs» which is a generalized Cartan matrix (=GCM).
Then, since the triple (5, {¢t;}scsr {@Y}ies) 18 a realization (but not a minimal
one) of the GCM A4,, the subalgebra m of g(4) can be regarded as a Kac-
Moody algebra associated to the GCM A,, whose Cartan subalgebra is §.
So, the well-known representation theory for Kac-Moody algebras is also
applicable to the subalgebra m of g(4) (cf. [3, Chs. 9 and 10]).

3.1. Results of L. Liu. Here, we rewrite, in the case of GKM alge-
bras, some of Liu’s results on m-modules H,u-, L(4)) and H'(u*, L(4)) for
Kac-Moody algebras. The proofs of these results for GKM algebras need
no modifications. For details, see [6] and also the appendix of [2].

Proposition 3.1 ([6]). H’(u*, L(4)) is isomorphic to H,u-, L(4)) as m-
modules for any Ade P* and j e Z,.
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Due to this, it is enough for us to consider H,(u-, L(4)) (j>0) only.
And, since L(4) and (A1")®¢ L(A) are in the category ¢, by Proposition
I, H,(u-, L(4) is also in ©,, and is a direct sum of L,(x), x€ P}, as m-
modules (>0). Furthermore, we have

Proposition 3.2 ([6]). Let (-|-) be a standard bilinear form on YH*.
Then, for any AeP* and jeZ., every wm-irreducible component of
H (-, L(A)) is of the form L,(x), pe P;, with (u+p|p+p)=U+p| 44 p).

3.2. Main theorem. From now on, we assume that the symmetriz-
able GGCM A =(a,,), ., satisfies the following condition (C1):

(C1) either a,,=2 or a,,=0 (i e I).

Then, from Theorem I and Corollary I, we get the following.

Lemma 3.1. e(p)-ch (An-)=ch (% Llp—p), with n~:=3 %+ §_.

Remark 3.1. By the condition (C1), p— g e P* for all S ¢ @.

From the above lemma, it follows that, for every 4 € §*,

e(p)-¢h (A n)®¢ L) =ch (T%e Llp— B¢ L)
Therefore, x is a weight of (An")®¢ L(4) if and only if y+p is a weight of
(O%.s L(o— B)®¢ L(4), and moreover, they have the same multiplicity.
Using this fact, we can show

Lemma 3.2. Let Ae P*. Assume that pis ¢ weight of (\u")Q¢ L(A)
for some j>0, and satisfies (u+p|p+p)=UA+p|A4+p). Then,

(a) thereexista fe @A) andawe W) :={weWlwd)N4* 4" ()},
such that £(w)+ht(B)=j and p=wd+p—p—p;

(b) the multiplicity of p in (N\u-)Q¢ L(4) is equal to one.

Here, ¢(w) is the length of we W, and ht(f)=m if pe S is a sum of m
distinct elements from II'™.

By Proposition 3.2 and Lemma 3.2, we have the following.

Proposition 3.3. Let Ae P* and je Z,,. If L) (e P}) is an m-
irreducible component of H,(u", L(A)), then

(a) p=wd+p—p)—p, for some BeS(4) and some we W(J), such
that 6(w)+ht(B)=7;

(b) L,(p) occurs with multiplicity one as m-irreducible components
of H,(u~, L(A)).

Now, from Theorem I and the Euler-Poincaré principle (cf. [2]), we
get the following.

Lemma 3.3. For Ae P*, there holds in the algebra &,

D520 (—1) ch, .(Hj(u", L(4))) =Zﬂe@(4) eB) Dweww (det ’w)em('w(/l-i‘{)— B—p-

Remark 3.2. For we W(J) and pe S, w(d+p—p)—pe P;.

By Proposition 3.3 and Lemma 3.3, we have

Proposition 3.4. Let Ae P* and fix je Z,,. For each BeS(A) and
we W(J) such that 4(w)+ht(B)=j, we put p:=wd+p—p—p. Then,
L, (p) occurs as m-irreducible components of H,(u~, L(/1)).

Summarizing Propositions 3.1, 3.3, and 3.4, we obtain our main the-
orem.
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Theorem 3.1. Let g(A) be the GKM algebra associated to a symme-

trizable GGCM A=(a,,), ;c, satisfying (C1). And let L(A) be the irreducible
highest weight g(A)-module with highest weight Ae P*. We assume that
the subset J of I is contained in I". Then, for j>0,

Hi(u+, L(/D)EHJ(U-M, L(M))= Z?e@(/l) ﬁg)z(f—)m(ﬂ) Lm(w(/l‘i'P_ﬁ)_P)

as m-modules. Here, L,(1) (ne P;) is the irreducible highest weight -
module with highest weight p.

Remark 3.3. When A is a GCM (@i.e., a,;,=2 for all 1), &(4) consists
of only one element 0c9*. Hence, in this case, the above theorem is

nothing but the well-known Kostant’s Theorem for Kac-Moody algebras
(see [2] and [5]).
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