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65. An Application of a Theorem of Rudin
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Virginia Technological Institute and State University

(Commflnicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1992)

1. Introduction. The study of generalized paracompact spaces has be-
come significant in recent years. In addition to the new results in this area
there have been a number of new interesting questions that have arisen from
these studies. In this paper we answer one of these questions by applying a

significant theorem of M.E. Rudin [7].
Definition 1. A family {Fa cr A } is closure-preserving if for ev-

ery subset B
___

A,
U F=UF.
BB

Likewise, is hereditarily closure-Weserving if for every B - A and {H

fl B} whereHo___ Fo, U Ho UHo.
OB OB

Let P be one of the following properties; discrete (/9), locally finite

(LF), hereditarily closure-preserving (HCP), and closure-preserving
(CP). The symbol will denote any countable ordinal.

Definition 2. A space X is B (P, ,)-refinable provided every open cov-

er of X has a refinement $ U {8o: < /} which satisfies i) {U
/ < /} paritions X, ii) for every / </, So is a relatively P collection of
closed subsets of the subspace X-- U {U $.:/z < fl}, and iii) for every

fl < /, U {Ug.:g < } is a closed set.
The collection $ is often called a B (P, )-refinement of
Problem. When are the properties B(D, /)-refinable, B(LF, .)-

refinabl and B (HCP, 2)-refinable equivalent? Partial answers to this ques-
tion are found in [6]. We now provide a more complete answer using the fol-
lowing result [71.

Theorem 1 (Rudin). Let X be a collectionwise normal space and an open
cover of X. If o has a closed hereditarily closure-perserving refinement, then all
has a locally finite closed refinement.

Theorem 2 In a collectionwise normal space X, the following are equivalent.
(i) X is paracompact.
(ii) X is B (D, 2)-refinable.
(iii) X is B (LF, )-refinable.
(iv) X is B (HCP, )-refinable.
Proof. It is known (see [6]) that (i)----(ii)----(iii) and clear that (iii)

(iv). Here we need only show that (iv)= (i). Let a//-- {Ua cr A} be an

open cover ofXand 8 U {8o fl < } a B (HCP, 2)-refinement of . By
Theorem 3 of [6] we have that X is expandable. We construct for each
< /, a LF-open partial refinement W of a// such that W covers (U 8)
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U { (U V,) "fi ( 6}. To get started, o// has a LF-closed partial refinement o
which covers U 8o by Theorem 1 above. Since X is expandable, o// has a
LF-open partial refinement V covering U 8o.

Now for fiixed 6 (, assume that for each fi (6, there exists a
LF-open partial refinement / of o// such that W covers U 8] U {(
/4/o)" p }. Now H-- ( U Ss) {( U SV,)’fl< 6} is closed in X and
$lH is HCP. By Theorem 1, H has a LF-closed cover 0 which partially
refines o//. Thus 0 has a LF-open expansion //0 which partially refines
and the induction is complete. Therefore o// has a a- LF open refinement
and hence X is paracompact.

It is interesting to note that the B(P, 2)-refinable properties are
"ordinal" dependent. In [1] a normal space is constructed for any countable
ordinal 2, which is B(D, 2)-refinable but not B(D, )-refinable for any

2. We can show the following however.
Theorem 3. Let X be hereditarily countably metacompact. If X is

B (LF, 2)-refinable, then X is B (D, o) 2)-refinable.
Proof: Let be an open cover of X, and o- U (80"6< 2) a B(LF,

2)-refinement of o//. For each n N and 6 2, define
S(6, n) {x ord (x, 8o) <- n} U ( U S’ ( 6}, and

S0 {S(6, n) "n N}.
Now So is a countable monotone open cover of the subspace K-X-

U {U $,’fl < 6}. Therefore, S has a relatively closed shrink o
{F(6, n) "n N) which covers the subspace K with F(6, n) c S(6, n)
for each n N.

For every 6 < 2 and n N, define
(6, n) {E F(6, n)’E $o},and
go- U ((6, n) "n N}.

Since each member of W(6, n) is contained in S(6, n), it follows that
W(6, n) is a relatively n-bded-LF collection of closed subsets of the sub-
space K. Furthermore, W(6, n) partially refines 80, and U Wo U 80.

For every 6 < 2 and n N, define
:(6, n) (H-- U(U(6, j)’j<n}’H (6, n)},and
J(0 U(9(6, n)’n<N}.

Define a well-order <" on j {(6, n) 6 < /, n N} such that for
every (13, m), (6, n) J.

(, m) < (6, n) iff (i) < 6, or (ii) 6 and m < n.
Let f’J {tt’fl < o2 2} be the unique bijection which preserves

this order. For each tz < o 2, define u (6, n) such that f(6, n)

By construction it is easy to see that -- U (u’/2< 02 ,} is a

B(bded-LF, o /)-refinement of //’ therefore, X is B (D, o 2)-refinable.
Open questions. (l) Can Rudin’s Theorem be generalized?

(2) Can Theorems 2 and 3 be generalized?

(3) When is B (CP, /)-refinable equivalent to the other properties?
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