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32. Some Problems of Diophantine Approximation in the
Theory of the Riemann Zeta Function

By Akio FuJju®
Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., June 9, 1992)

§ Introduction. Let « be a positive number. The distribution of the
fractional part {an} of an has been studied extensively. It is well-known
that it depends heavily on the arithmetic nature of «. We may Dbriefly
recall this fact for a quadratic irrational « as follows. It was shown by
Hardy-Littlewood [6] and Ostrowski [8] that
5 ({an}-—%><<logX.

n<X

Hecke [7] has shown, in fact, that if « is ¥/ D or 1/y/ D with a positive
square free integer D=2 or 3 (mod 4), then for any ¢>0

5 ({an}——;—) log* X — 4, log’ X+4,log* X+ A4, log X

n<X n

+ Z C’mX(Zﬂim)/(IOg 7D) __|_O(X—1+s),

M= —oco

where 4,, A,, A, and C,, are some constants, C,=0(m|**¢) for m+0 and

7o 18 the fundamental unit of the quadratic number field Q(v/ D) or the
square of it. The author [4] [5] has extended his result and shown that
for any ¢>0

5 ({m}——é—) log X —_—%Gl(a) log* X +Gy(e) log X
n

n<X

-+ f C;nX(Znim)/(IOf;??I))+O(X_(1/3)+s)’

m=—co

where G,(«) and G,(«) can be explicitly written down in terms of the contin-
ued fraction expansion of « and C,, =0(m| “**¢) for m=+0.
Here we are concerned with the distribution of

where y runs over the positive imaginary parts of the zeros of the Riemann
zeta function {(s). Our main problem is to find an asymptotic formula for

the sum
L} _ l)
r; <{a 27 2

and determine how it depends on @«. Our result is not precise enough for
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this sum. However, we shall give a finer result on the asymptotic behav-

ior of the sum
T 2_{ j_} l)
r;lr ({a 271'} * 2 + 6

and see, in particular, a singular property when e is a prime power.

The following theorems will be proved. Let N(T) denote the number
of the zeros of {(s) in 0<Js<T, which is known to be

T
~_—_logT.
27 &
Let R. H. be the abbreviation of the Riemann Hypothesis.
Theorem 1. For any positive « and T>T,, we have
1 ( { y } ) log log T
NT) 2\ %2 N TlogT

Theorem 2 (Under R. H.). For any positive a, positive ¢ and T>T,,
we have

vy 5 (92}~ 2) <opry
N 2\ 2z Clog Ty
Theorem 3. For any positive « and T>T,, we have

1 V' L} ) loglog T
N(T)%:T({“zn} {“271 tE)S 10T

Theorem 4 (Under R. H.). Suppose that either « or e* is algebraic.
Then for any positive e and T>T,, we have

L}z_{ J;} _1_>= _ T AE) 14 p-@ma O( T )
r§ ({a 2r * 2r + 6 278 G* (e )+ (log T)'-¢ /)’
where A(x)=Ilog p if x=p" with a prime number p and an integer k>1, =0
otherwise, we put

Li,(x) =i -

2

1
and G is either the minimum integer n(>1) such that e is a prime power,
or 1/a if such n does not exist.

It is clear from the proof of Theorem 4 that the same conclusion holds
for « of the form g,+> 7., B,log «; with non-zero algebraic numbers «;, j=
1,2,8, .-+, M and algebraic numbers g, j=0,1,2, ---, M. Other cases for
o are included in the following general theorem.

Theorem 5 (Under R. H.). For any positive a and T>T,, we have

1 ({ L}Z_{ L} _1_) 1
N 2\ W2t 1% 20 T ) S log T
As we know, {x}—1/2=B,({x}) and {x}’—{x}+1/6=B,({z}), with the
Bernoulli polynomials B, and B,. Similarly, we can evaluate the sums

55w })

for n>3.



No. 6] Diophantine Approximation 133

§ 2. Proof of Theorem 1. Let H be a sufficiently large number
which well be chosen later. We decompose our sum as follows.

=2 ({4} %)

= 03 (f41-3)
TL:“; ({a 27 2 +TST,0${L¥%/:2I))<1/H a2n- 2

YH< {a(y/20)}<1-1/H 1-1/H<{a(y/27)}<1

=S8,+S,, say.
To estimate S,, we shall use the following lemma which gives a discrepancy
estimate of the uniform distribution of a(y/2x).

Lemma 1. For any «>0, any positive ¢ and for T>T,, we have

1 . 1
ey | r=Tiosla LY <af[=p+0( )
uniformly for pin 0<<Bp<1.
This is proved in Fujii [2].
Applying this we get

S« Y 4 Y 1< AN@4+NTog T
Og{a(rr/%nl)‘}<l/H 1—-1/II<T(§%17/21:))<1 H

For S,, we notice first that if «(y/2x) is not an integer,
7 } 1 1 k ( B S )
ot = ———sin (kay)+0O( -
{ o) T2 T i g S FD O e
where ||x|| denotes the distance of x from a nearest integer.
Using this expression, we get

S=— 57 L 5 sin (Icozﬂ—l—O(% s . - )
1<5=8 kr I A YH< G o) <1-1/H a(y /2m) ||
=Sa+S4, say
1 1 1
S<r B oty D i
H 1/f1<((l(r/27r) <1/2 {a(T/zn')} 1/2<((K(TT§2Z;))S1—>1/II —-{a(r/zﬂ)}
1 1
<L 5 D
H 1<inzwp O =< U {a(r/27r)}
1
L5 >
H 1ginznpe MIHE1- (a(rn)) < (m 1) /2 1—{a(r/2m)}
Ly ez L 5 1
1<m<H/2 M 7<T 1I<m<H/2 M r<T
m/H<{a(r/2z)} <(m+1)/H 1—-(m+1)/H<{a(r/27)}<1-m/H

Using Lemma 1 again, this is
N (T) tre
<logH +N(M(Qog T)- >

We turn to estimate S;.

Si=— >, — Z sin (kar)-l- J— 2. sin (kay)
1<E<H lcn i<T # kr TET0< a2 U/
=8,+8, say.

Using Lemma 1, we get as before
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S,<log H(Q%Tl L N(T)(log T)*’“).
Finally, we shall estimate S;. For this purpose we shall use the fol-

lowing lemma which has been proved in [3].

Lemma 2. For 1< X< TV, >0 and T>T,,
ST X« T'log X +Min ( ogT og T).
<7 log X

Using this we get
S, 3 %(Tk+Min ( loi T Tiog T)) «TH.

1<k<H

Consequently, we get
S«log H(Z_VFLIT_) +N(T)(log T)“”) L TH.

Choosing H=+/log T loglog T, we get

§ 3. Proof of Theorem 2. If we assume R.H., then we can use an
improvement of Lemma 2 in the following form (cf. Fujii [3] for a more
precise result).

Lemma 3 (Under R. H.). For X>1 and T>T,, we have

. T AX) ( logT log T
X7 = (0] X1 Vs
rszf T2 VX + log X +v/ Xlog X (loglog T)?

log (2X) 1
+ X log (3X) log log (3X) +-°€ 2) Min (T, M))
VX [log X/ P(X)|
where P(X) is the nearest prime power other than X itself.
If we apply this, then S, in the previous section is
i(l;ogg ka2l log (3 a2, logT —]C—T>
o OB gy T )

Here we choose H=C log T with a sufficiently small positive C. Then this
is

12k<H |

«T.
Consequently, we get

> ({aJ_} _ l) <log H( NT) | N(T)0g T)- ) 4T
r<T 2r 2
KN (Aog T)-1*<.
§ 4. Proof of Theorems 3, 4 and 5. We shall prove Theorems 4 and
5 first. By the Fourier expansion of {x}*—{x}+1/6, we get

S(led ) ed+s)

:r;‘ 12;‘11 nln cos (nay)+ O( ,Z:% Min (1, »HAHaZ%/E;JH,»

== U1 + Uzy say,
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where we suppose that 1« H<ClogT with a sufficiently small positive
number C.

Using Lemma 1 as in the previous section, we get

1 1
U< L b A4 > 2, ST
H remosipaisys L - S C o)
1 1
2 2

: .
H* 1<inznn m/}[sl—(a(g/SZZ)K(mH)/H 1— {0((;’/271’)}

KlogH <%+N(T)(l_0g_£ﬁf_>-

Using Lemma 3, we get

U= 3, : Z cos (nay)
1<n<H T ’n
= (e O rO(en g )
0@ log (3n))+0< " Min (T, T em/l(P(eM))] )))
27 ;"1 ﬁ(ee"a/)z +oIr )+O(ls‘n2ga Wei—“/T Min (T’ |log e”“/l(P(e""))l )>

Suppose first that e* is algebraic. Then by the formula of 1.7 in p. 3
of Baker [1], we get for n>1 and with some positive constant D depending
only on «,

log { =|nloge*—log P(e*)|>e D=,
log 5| =1 >
Consequently, the last remainder term is
2. e .
<< 1<n<H = o7 ne)? << T .
ety

Choosing H=Clog T, we get in this case
7 2_{ L} _1~>=_ T A(eG") Li.(e- €M« O( T )
Z <{“ 27;} M or G AT\
Suppose next that « is algebraic. Then by Theorem in p. 1 of Baker

[1], we get for n>1 and with some positive constant D’ depending only on
«,

e _ . na - D'n log (3n)
‘logm‘ =|na—log P(e™)|>e .
Then, choosing H=C(log T)/(loglog T), the last remainder term in U, is
seen to be

LTe.
Hence in this case we have also the same evaluation as the first case.
Thus Theorem 4 is proved.
Generally, using a trivial estimate

1 5 1
3 win(, Jer.
13%11 neer? n |log e /(P(e™))| <
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L}Z_{ _z_} _1.) T,
rsZ'T ({a 21 * 27 + 6 <
This is our Theorem 5.

To prove Theorem 3, we use the same argument as above with H=
v1log T except the treatment of U,. For U,, we use Lemma 2 and get

U<, 5 (Tnr BT ) Trog .

1<n<H N n

we get

Thus we get

VT l) Tlox H (TlogT TlogT )1 H
TSZT:’({(X 271'} {CY 271'}+6 << Og + H2 +H(10gT)1_s Og

&TloglogT.
This is our Theorem 3.
§ 5. Concluding remarks. The present method can be applied to

estimate the sum

2 (&xp}—%),

p<X

where p runs over the prime numbers. The corresponding lemmas are
supplied by Vaughan in Theorems 1 and 2 of [10].
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