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0o Introduction. In general, there are many different complex
manifolds having the same underlying topological or differentiable struc-
ture. However there are a few exceptional cases where we can expect
that homeomorphy to a given compact complex manifold implies analytic
isomorphism to it, for instance, a compact Hermitian symmetric space.
Among Hermitian symmetric spaces, the complex projective space pnC and
a smooth hyperquadric Q in P+ seem to be nice exceptions which we can
handle with algebraic methods. In [6] we studied the complex projective
space P, while we study a smooth hyperquadric Q in P/c in [7]. A goal
we have in mind is the following

Conjecture MQn. Any Moishezon complex manifold homeomorphic
to Q is isomorphic to Q.

The conjecture has been solved partially by Brieskorn [1] under the
assumption that the manifold in question is Kihlerian and odd-dimension-
al. In the even-dimensional Kdhlerian case, there still remains a possibil-
ity of manifolds of general type. Recently Kollfir [2] and the author [4]
solved Conjecture MQ in the affirmative, each supplementing the other.
Peternell [8] [9] also asserts the same consequence.

Theorem. Any Moishezon threefold homeomorphic to Qc is isomor-
phic to Qc.

The purpose of the present article is to report a partial solution [7] to
the above conjecture in dimension 4. We also report some results on
threefolds with the first Chern class divisible by three and possibly with
the second Betti number b greater than one.

1. A complete intersection 1,. (1.1) Let X be a complete non-
singular algebraic variety (or a compact complex manifold) o dimension
n, L a line bundle on X. We assume h(X,L)>_n. Let V be an (n--1)-
dimensional subspace of H(X, L), l:=l, a scheme-theoretic complete inter-
section associated with V. This means that the ideal I of Oz defining is
defined by I:,.sO. Let B::BslLI, the base locus o. IL I. We say
that C is a reduced curve-component of if C is an irreducible one-dimen-
sional component of along which is reduced generically.

(1.2) Lernma. Assume cl(X)--ncl(L), and h(X, L)>_n and let be a
scheme-theoretic complete intersection of (n--1)-members of ILl. Assume
moreover that has a reduced curve-component C with LC>_I outside B.
Then one of the following cases occurs.
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(1.2.1) LC=2, CP’, Nc/xOc(2)(-’), C is a connected component
of 1.

(1.2.2) LC-1, C_P, Nc/OcOc(1)-, and C intersects B at a
point p transversally, where

I,=(x, ..., x_., x_x),
I,=(x, ",x_,x_),
I,,=(x,, ",Xn_,X)

by choosing a suitable local coordinate x, ..., x at p.
(1.2.3) There is another component C of such that CP, C-Co,

LC--I, Nc/xOc,Cc(1)e(-) (i--O, 1). The components Co and C inter-
sect transversally at a point p where

I,--(x, ..., x_, X-Xn),
I0,--(x, ", Xn-., Xn-,),
I,,=(x, ., x_, x),
I,,,=(x, ..., Xn_2, Xn_l, Xn)

in terms of suitable coordinates at p.
(1.2.4) There is a chain of m (_1) smooth rational curves C (Oi

m) such that
C=Co, LCo--LC=I, LC=O (1im-1)

Oc(R)Oc(1)(-) (i=0, m)Nc/,,:
tOc(--2)@O-) or O(--((c-) (lim--_ 1).

The curves C and C (ji) do not intersect unless j=i-1, while C_ and

C intersect transversally at a point p where
I,p=(x, ., x_, Xn_lXn)
Ic_,=(x, ", X-,Xn-),
I,=(x, ...,x_,x)

in terms of suitable local coordinates at p. Moreover Co+... +C is a
connected component of with C Bro= (lim--1).

2. Moishezon fourfold homeomorphic Q. (2.1) Lemma. Let X
be a Moishezon manifold of dimension n with b(X)=l, L a line bundle on
X. Assume that c(X)=nc(L) and h(X, Ox(L))_n+l. If a complete
intersection of general (n-1)-members of ILl has an irreducible curve-
component C with LC_2 outside BslLI, then XQn.

(2.2) Lemma. Let X be a Moshezon 4-fold homeomorphic to Q, and
L a line bundle on X with L=2. Assume that h(X, L)_2. Let D and D’
be distinct members of ILl, the scheme-theoretic complete intersection
D D’. Then is pure two-dimensional Gorenstein and we have

(2.2.1)
(2.2.2)
(2.2.3)
(2.2.4)
(2.3)

and L a line bundle on X with L=2.

Pie X ZL, Kx --4L,
Hv(X,--qL)--0 (p=0, q_l, or 1_p_3, O_q_4, or p-4, q_3)
H(r, qL) 0 (p O, q 1, 2, or p 1, 0_ q_2, or p 2, q 0, 1)
H(X, Ox)_H(D, O)_H(r, 0)_ C, and IL]r--]Lr].

Theorem. Let X be a Moishezon 4-fold homeomorphic to Q,
Assume that h(X, L)_5. Then
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(2.4) Corollary. Any global deformation of Q4 is isomorphic to Q4.
3. Moishezon threei:olds with cl divisible by 3. (3.1) Theorem.

Let X be a Moishezon 3-fold and L a line bundle on X with L_I. Assume
that hi(X, Ox)=0, c(X)=3c(L), h(X, L)_2, and dim Bs ILI_I. Then
XQ or P((a, b, 0)) (a_b_nO, a+b=3n+2), where (a, b, 0)’=
O,,(a)@O,(b)@O,,.

(3.2) We assume a Moishezon 3-io.ld X to have line bundles L and F
such that

Pie X H(X, Z)ZLZF, H(X, Z)ZLZLF,
c,(X)=3c,(L), c2(X)=3L2+2LF, L3=2, L2F--1, F2=0,
hq(X, Ox)--O(q_l), h(X,L--F)_2, h(X,F)_2.

(3.3) Theorem. Let X be a Moishezon 3-fold. If X satisfies the con-
ditions in (3.2), then XP((a, b, 0)) for some ab_O and a+b----2 mo.d 3.

(3.4) Theorem. Let X be a Moishezon 3-fold homeomorphic to
P((2, 0, 0)). If h(X, L-2F)_ 1 and h(X, F)_2, then XP((a, b, 0))
for some a_b_O, a+b-=2 mod 3, (a, b)ve(1, 1).

Table.

Bs ILl dim W* Sing W-- --- --on--po.in---
3 P

curve 2 at most one point

surface ? ?

Threefolds with h(X, 0)=0, c,(X)=3c,(L), L’_I, h(X, L)_2

* W is the image ot the rational map h" XoP associated

P((1, 1, 0))

P((2, 0, 0))

P((a, b, 0))+ bn>-I
=3n+2

with IL m=h(X,L)--l.

4. Global deformations o ((a, b, 0)). (4.1) Let k=0 or 1. We
assume that a Moishezon 3-old X has line bundles L and F satisfying the
following co.nditions,
(4.1.k) PicXH2(X, Z) ZLZF, H*(X, Z)ZL2ZLF,

c(X)=3L+(2--k)F, L3=k, L2F=I, F=0,
hq(X, Ox)--O (q__l), h(X, L)_3,
h(X, L-- F)

_
1, h(X, F)

_
2, Z(X, L)-- O.

(4.2) Theorem. Let k=0 or 1. If a Moishezon 3-fold X satisfies
the condition (4.1.k), then XP((a, b, 0)) for some a_b_O, a+b_l and
a+b=_k mod 3.

We note that (8.4) does not classify all the global deformations of
P((a, b, 0)) with a+b--0 mod 3, because h(X, L--F)=0 is possible. Com-
bining (4.2) with (3.3), we infer
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(4.3) Theorem. Let k= 1 or 2. The set of all P2-bundles P((a, b, 0))
over p1 with a_b_O, a+b=_k mod 3 is stable under global deformation.
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