82. Moishezon Fourfolds Homeomorphic to Q_{C}^{4}

By Iku Nakamura
Department of Mathematics, Hokkaido University
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1991)

§ 0. Introduction. In general, there are many different complex manifolds having the same underlying topological or differentiable structure. However there are a few exceptional cases where we can expect that homeomorphy to a given compact complex manifold implies analytic isomorphism to it, for instance, a compact Hermitian symmetric space. Among Hermitian symmetric spaces, the complex projective space P_{c}^{n} and a smooth hyperquadric $\boldsymbol{Q}_{\boldsymbol{C}}^{n}$ in $\boldsymbol{P}_{\boldsymbol{C}}^{n+1}$ seem to be nice exceptions which we can handle with algebraic methods. In [6] we studied the complex projective space \boldsymbol{P}_{C}^{n}, while we study a smooth hyperquadric $\boldsymbol{Q}_{\boldsymbol{C}}^{n}$ in \boldsymbol{P}_{C}^{n+1} in [7]. A goal we have in mind is the following

Conjecture $M Q_{n}$. Any Moishezon complex manifold homeomorphic to \boldsymbol{Q}_{C}^{n} is isomorphic to \boldsymbol{Q}_{c}^{n}.

The conjecture has been solved partially by Brieskorn [1] under the assumption that the manifold in question is Kählerian and odd-dimensional. In the even-dimensional Kählerian case, there still remains a possibility of manifolds of general type. Recently Kollár [2] and the author [4] solved Conjecture $M Q_{3}$ in the affirmative, each supplementing the other. Peternell [8] [9] also asserts the same consequence.

Theorem. Any Moishezon threefold homeomorphic to \boldsymbol{Q}_{C}^{3} is isomorphic to \boldsymbol{Q}_{C}^{3}.

The purpose of the present article is to report a partial solution [7] to the above conjecture in dimension 4 . We also report some results on threefolds with the first Chern class divisible by three and possibly with the second Betti number b_{2} greater than one.
§ 1. A complete intersection l_{V}. (1.1) Let X be a complete nonsingular algebraic variety (or a compact complex manifold) of dimension n, L a line bundle on X. We assume $h^{0}(X, L) \geq n$. Let V be an $(n-1)$ dimensional subspace of $H^{0}(X, L), l:=l_{V}$ a scheme-theoretic complete intersection associated with V. This means that the ideal I_{l} of O_{x} defining l is defined by $I_{l}=\sum_{s \in V} s O_{x}$. Let $B:=\mathrm{Bs}|L|$, the base locus of $|L|$. We say that C is a reduced curve-component of l if C is an irreducible one-dimensional component of l along which l is reduced generically.
(1.2) Lemma. Assume $c_{1}(X)=n c_{1}(L)$, and $h^{\circ}(X, L) \geq n$ and let l be a scheme-theoretic complete intersection of $(n-1)$-members of $|L|$. Assume moreover that l has a reduced curve-component C with $L C \geq 1$ outside B. Then one of the following cases occurs.
(1.2.1) $L C=2, C \simeq P^{1}, N_{C / X} \simeq O_{C}(2)^{\oplus(n-1)}, C$ is a connected component of l.
(1.2.2) $L C=1, C \simeq P^{1}, N_{C / X} \simeq O_{C} \oplus O_{C}(1)^{\oplus(n-2)}$, and C intersects B at a point p transversally, where

$$
\begin{aligned}
& I_{l, p}=\left(x_{1}, \cdots, x_{n-2}, x_{n-1} x_{n}\right), \\
& I_{C, p}=\left(x_{1}, \cdots, x_{n-2}, x_{n-1}\right), \\
& I_{B, p}=\left(x_{1}, \cdots, x_{n-2}, x_{n}\right)
\end{aligned}
$$

by choosing a suitable local coordinate x_{1}, \cdots, x_{n} at p.
(1.2.3) There is another component C_{1} of l such that $C_{i} \simeq \boldsymbol{P}^{1}, C=C_{0}$, $L C_{i}=1, N_{C_{i} / X} \simeq O_{C_{i}} \oplus C_{C_{i}}(1)^{\oplus(n-2)}(i=0,1)$. The components C_{0} and C_{1} intersect transversally at a point p where

$$
\begin{aligned}
& I_{l, p}=\left(x_{1}, \cdots, x_{n-2}, x_{n-1} x_{n}\right), \\
& I_{C_{0}, p}=\left(x_{1}, \cdots, x_{n-2}, x_{n-1}\right), \\
& I_{C_{1}, p}=\left(x_{1}, \cdots, x_{n-2}, x_{n}\right), \\
& I_{B, p}=\left(x_{1}, \cdots, x_{n-2}, x_{n-1}, x_{n}\right)
\end{aligned}
$$

in terms of suitable coordinates at p.
(1.2.4) There is a chain of $m(\geq 1)$ smooth rational curves $C_{i}(0 \leq i \leq$ $m)$ such that

$$
\begin{gathered}
C=C_{0}, \quad L C_{0}=L C_{m}=1, \quad L C_{i}=0 \quad(1 \leq i \leq m-1) \\
N_{C_{i} / X} \simeq\left\{\begin{array}{ll}
O_{C_{i}} \oplus O_{C_{i}}(1)^{\oplus(n-2)} & \quad(i=0, m) \\
O_{C_{i}}(-2) \oplus O_{C_{i}}^{\oplus(n-2)} & \text { or } O_{C_{i}}(-1)^{\oplus 2} \oplus O_{C_{i}}^{\oplus(n-3)}
\end{array} \quad(1 \leq i \leq m-1) .\right.
\end{gathered}
$$

The curves C_{j} and $C_{i}(j<i)$ do not intersect unless $j=i-1$, while C_{i-1} and C_{i} intersect transversally at a point p_{i} where

$$
\begin{aligned}
& I_{l, p_{i}}=\left(x_{1}, \cdots, x_{n-2}, x_{n-1} x_{n}\right), \\
& I_{c_{i-1}, p_{i}}=\left(x_{1}, \cdots, x_{n-2}, x_{n-1}\right), \\
& I_{C_{i}, p_{i}}=\left(x_{1}, \cdots, x_{n-2}, x_{n}\right)
\end{aligned}
$$

in terms of suitable local coordinates at p_{i}. Moreover $C_{0}+\cdots+C_{m}$ is a connected component of l with $C_{i} \cap B_{\text {red }}=\phi(1 \leq i \leq m-1)$.
§ 2. Moishezon fourfold homeomorphic Q^{4}. (2.1) Lemma. Let X be a Moishezon manifold of dimension n with $b_{2}(X)=1, L$ a line bundle on X. Assume that $c_{1}(X)=n c_{1}(L)$ and $h^{0}\left(X, O_{X}(L)\right) \geq n+1$. If a complete intersection of general ($n-1$)-members of $|L|$ has an irreducible curvecomponent C with $L C \geq 2$ outside $\mathrm{Bs}|L|$, then $X \simeq \mathbf{Q}^{n}$.
(2.2) Lemma. Let X be a Moshezon 4-fold homeomorphic to \boldsymbol{Q}^{4}, and L a line bundle on X with $L^{4}=2$. Assume that $h^{0}(X, L) \geq 2$. Let D and D^{\prime} be distinct members of $|L|, \tau$ the scheme-theoretic complete intersection $D \cap D^{\prime}$. Then τ is pure two-dimensional Gorenstein and we have
(2.2.1) $\operatorname{Pic} X \simeq Z L, K_{X} \simeq-4 L$,
(2.2.2) $\quad H^{p}(X,-q L)=0(p=0, q \geq 1$, or $1 \leq p \leq 3,0 \leq q \leq 4$, or $p=4, q \leq 3)$
(2.2.3) $H^{p}\left(\tau,-q L_{r}\right)=0(p=0, q=1,2$, or $p=1,0 \leq q \leq 2$, or $p=2, q=0,1)$
(2.2.4) $\quad H^{0}\left(X, O_{X}\right) \simeq H^{0}\left(D, O_{D}\right) \simeq H^{0}\left(\tau, O_{r}\right) \simeq C$, and $|L|_{r}=\left|L_{r}\right|$.
(2.3) Theorem. Let X be a Moishezon 4-fold homeomorphic to \boldsymbol{Q}^{4}, and L a line bundle on X with $L^{4}=2$. Assume that $h^{0}(X, L) \geq 5$. Then $X \simeq \boldsymbol{Q}^{4}$.
(2.4) Corollary. Any global deformation of \boldsymbol{Q}^{4} is isomorphic to \boldsymbol{Q}^{4}.
§ 3. Moishezon threefolds with c_{1} divisible by 3. (3.1) Theorem. Let X be a Moishezon 3 -fold and L a line bundle on X with $L^{3} \geq 1$. Assume that $h^{1}\left(X, O_{X}\right)=0, c_{1}(X)=3 c_{1}(L), h^{0}(X, L) \geq 2$, and $\operatorname{dim} \mathrm{Bs}|L| \leq 1$. Then $X \simeq \boldsymbol{Q}^{3}$ or $\boldsymbol{P}(\mathscr{F}(a, b, 0))(a \geq b \geq n \geq 0, a+b=3 n+2)$, where $\mathscr{F}(a, b, 0):=$ $O_{P_{1}}(a) \oplus O_{P_{1}}(b) \oplus O_{P_{1}}$.
(3.2) We assume a Moishezon 3 -fold X to have line bundles L and F such that

$$
\begin{aligned}
& \operatorname{Pic} X \simeq H^{2}(X, Z) \simeq Z L \oplus Z F, \quad H^{4}(X, Z) \simeq Z L^{2} \oplus \boldsymbol{Z} L \boldsymbol{F}, \\
& c_{1}(X)=3 c_{1}(L), \quad c_{2}(X)=3 L^{2}+2 L F, \quad L^{3}=2, \quad L^{2} F=1, \quad F^{2}=0, \\
& h^{q}\left(X, O_{X}\right)=0(q \geq 1), \quad h^{0}(X, L-F) \geq 2, \quad h^{0}(X, F) \geq 2 .
\end{aligned}
$$

(3.3) Theorem. Let X be a Moishezon 3-fold. If X satisfies the conditions in (3.2), then $X \simeq \boldsymbol{P}(\mathscr{F}(a, b, 0))$ for some $a \geq b \geq 0$ and $a+b \equiv 2 \bmod 3$.
(3.4) Theorem. Let X be a Moishezon 3 -fold homeomorphic to $\boldsymbol{P}(\mathscr{F}(2,0,0))$. If $h^{0}(X, L-2 F) \geq 1$ and $h^{0}(X, F) \geq 2$, then $X \simeq \boldsymbol{P}(\mathscr{F}(a, b, 0))$ for some $a \geq b \geq 0, a+b \equiv 2 \bmod 3,(a, b) \neq(1,1)$.

Table. Threefolds with $h^{1}\left(X, O_{X}\right)=0, c_{1}(X)=3 c_{1}(L), L^{3} \geq 1, h^{0}(X, L) \geq 2$

	$\operatorname{Bs}\|L\|$	$\operatorname{dim} W^{*}$	Sing W	X
1	ϕ	3	ϕ	\boldsymbol{Q}^{3}
2	ϕ	3	one point	$\boldsymbol{P}(\mathscr{F}(1,1,0))$
3	ϕ	3	\boldsymbol{P}^{1}	$\boldsymbol{P}(\mathscr{F}(2,0,0))$
4	curve	2	at most one point	$\boldsymbol{P}(\mathscr{F}(a, b, 0))_{a+b=3}^{a<b=n \geq 1}$
5	surface	$?$	$?$	$?$

* W is the image of the rational map $h: X \rightarrow \boldsymbol{P}^{m}$ associated with $|L|, m=h^{0}(X, L)-1$.
§ 4. Global deformations of $(\mathscr{F}(a, b, 0))$. (4.1) Let $k=0$ or 1 . We assume that a Moishezon 3 -fold X has line bundles L and F satisfying the following conditions,

$$
\begin{align*}
& \operatorname{Pic} X \simeq H^{2}(X, Z) \simeq Z L \oplus Z F, \quad H^{4}(X, Z) \simeq Z L^{2} \oplus Z L F, \tag{4.1.k}\\
& c_{1}(X)=3 L+(2-k) F, \quad L^{3}=k, \quad L^{2} F=1, \quad F^{2}=0, \\
& h^{q}\left(X, O_{X}\right)=0(q \geq 1), \quad h^{0}(X, L) \geq 3, \\
& h^{0}(X, L-F) \geq 1, \quad h^{0}(X, F) \geq 2, \quad \chi(X,-L)=0 .
\end{align*}
$$

(4.2) Theorem. Let $k=0$ or 1. If a Moishezon 3 -fold X satisfies the condition (4.1.k), then $X \simeq \boldsymbol{P}(\mathscr{G}(a, b, 0))$ for some $a \geq b \geq 0, a+b \geq 1$ and $a+b \equiv k \bmod 3$.

We note that (8.4) does not classify all the global deformations of $\boldsymbol{P}(\mathscr{F}(a, b, 0))$ with $a+b \equiv 0 \bmod 3$, because $h^{0}(X, L-F)=0$ is possible. Combining (4.2) with (3.3), we infer
(4.3) Theorem. Let $k=1$ or 2 . The set of all \boldsymbol{P}^{2}-bundles $\boldsymbol{P}(\mathscr{F}(a, b, 0))$ over \boldsymbol{P}^{1} with $a \geq b \geq 0, a+b \equiv k \bmod 3$ is stable under global deformation.

References

[1] E. Brieskorn: Ein Satz über die komplexen Quadriken. Math. Ann., 155, 184-193 (1964).
[2] J. Kollár: Flips, flops, minimal models etc. (1990) (preprint).
[3] I. Nakamura: Moishezon threefolds homeomorphic to P3. J. Math. Soc. Japan, 39, 521-535 (1987).
[4] ——: Threefolds homeomorphic to a hyperquadric in P^{4}. Algebraic Geometry and Commutative Algebra in Honor of M. Nagata. Kinokuniya, Tokyo, Japan, pp. 379-404 (1987).
[5] --: A subadjunction formula and Moishezon fourfolds homeomorphic to $\boldsymbol{P}_{\boldsymbol{C}}^{4}$. Proc. Japan Acad., 67A, 65-67 (1991).
[6] --: On Moishezon manifolds homeomorphic to P_{C}^{n} (1991) (preprint).
[7] --: Moishezon fourfolds homeomorphic to \boldsymbol{Q}_{C}^{4} and Moishezon-Fano threefolds of index three (1991) (preprint).
[8] T. Peternell: A rigidity theorem for $P_{3}(C)$. Manuscripta Math., 50, 397-428 (1985).
[9] \qquad : Algebraic structures on certain 3-folds. Math. Ann., 274, 133-156 (1986).

