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Introduction. Let H be a Hopf algebra with coproduct 4: H-HKH.
Let R=3,0,8b, ¢ HOH be an invertible element. The triple (H, 4, R) is
called a quasi-triangular Hopf algebra if R satisfies the following proper-
ties (see [1]):

(0.1) A@)=RADR  (zeH),

(URid)(R) = Ris Rasy @EARN(R) =R R0,
where d=ro04d, r(2Q@y)=y®z and R,,=>, a,Qb,R1, R;=>, a,R1RD,,
Ru=>2,1Q0a,8b,. The R is called the universal R-matriz. From this
definition, it follows that R satisfies the Yang-Baxter equation:
(0~2) -(Ru-(Rl?,-chs = 9%2391139%2-

Let G be a complex simple Lie algebra and U(&) the universal envelop-
ing algebra of ¢. In 1985, Drinfeld [1] and Jimbo [2] associated to each G,
the h-adic topologically free C[[h]]-Hopf algebra (U,(G),d) such that
U.(@) WU, (G)=U(G), which is now called the quantum group or the quan-
tized enveloping algebra. Moreover Drinfeld [1] gave a method of con-
structing an element R=U,(G)QU,(G) such that (U,(9), 4, R) is a quasi-
triangular Hopf algebra. His method is called the quantum double
construction. By using this method, Rosso [9] gave an explicit formula of
R for G=sl,(C), and Kirillov-Reshetikhin [6], Levendorskii-Soibelman [8]
gave such a formula for any G.

Let §=G,@®3, be a complex simple Lie superalgebra of types A—G and
U(G) the universal enveloping superalgebra of G. In this note, we associate
to each G, an h-adic topological C[[k]]-Hopf superalgebra (U,($), 4°) such
that U,(G)/hU,(G)=U(G). In fact, the definition of U,(G) depends on a
choice of the Cartan matrix and the parities of the simple roots of . (For
the terminologies Lie superalgebra and Hopf superalgebra, see [4,6].) We
also introduce an h-adic topological Hopf algebra (Uz(G), 4°). The Ug(G) con-
tains U,(J) as a subalgebra and the Hopf algebra structure of (U(4), 4°)
arises naturally from the Hopf superalgebra structure of (U,(G),4°). In
this note, by using the quantum double construction, we construct an ele-
ment R e U(GQU:(EG) explicitly so that (U(Q), 47, R) is a quasi-triangular
Hopf algebra. In the process of constructing R, we can also show that
Uy($) and U,(G) are topologically free.

Details omitted here will be published elsewhere.

After I finished this work, Professor E. Date informed me about the
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existence of the preprint [5] of Khoroskin and Tolstoy, whose results seem
to have some overlap with the ones in the present paper.

§1. Preliminaries. Let §=0,®3, be a simple Lie superalgebra of
types A—G and U(G)=U(Q)DU(G), the universal enveloping superalgebra
of §. Let II={a,, ---a,} be the set of simple roots and p: II—{0,1} the
parity function. Let A be a Cartan matrix related to II. We assume that
A is of distinguished type when G+sl(n|m) or osp(n|m). In this note, we
define, for such A an h-adic topologically free C[[h]]l-Hopf superalgebra
UD)=U,(G, A, p)=U(D)DU(G), 4°) such that U,(G)/hU,(G)=U(G).
(The Hopf superalgebra U,(G) corresponding to osp(2|1) has already been
introduced by Kulish and Reshetikhin [7].) Let Z/2Z={(¢) act on U,(Q)
by ¢ -2=(—1)z for xe U,(G),. Define an h-adic C[[h]]-Hopf algebra as
follows :

(1) UG =U(DKCIRKe) as h-adic C[[k]]-modules. We denote
the element #®o° (z € U,(G), c e Z) of Uy(G) by zo°.

(ii) The product of U,(G) is defined by wxo¢-2'¢"=(—1)xx'cc** for
xe U,(G) and 2’ € U,(G),.

(iii) The coproduct 4° is defined by putting 4°(x6°) =3, a,0"*°®b,a° for
e Uy D), 4'@)=3 a,b; and b, € U,(G),,. (The Hopt algebra U;(&) corre-
sponding to sl(1|1) has already been introduced by Jing, Ge and Wu [3].)

§2. Dynkin diagrams. Let A be o Cartan matrix of rank n satisfy-
ing the condition of §1. Let (@,I) (I=(e, - - -, «,) be the root system of
A where @ and I denote the set of roots and the set of simple roots. Put
N=n+1 if A is of type A, and N=n otherwise. We assume that (@, I) is
embedded in an N-dimensional complex linear space S with a non-degener-
ate symmetric bilinear form (,). Let D=diag(d,, -, d,) be the diagonal
matrix described below. They satisfy DA=[(«,, a)].

(i) Types A,B,C,D. Let{s|1<i<N}bea basis of S such that (¢, ¢,)
=+1. We can arbitrarily choose the sign of (¢, ¢). Inthe diagram below,
the element under the i-th vertex denotes the simple root «;.

1 2 N-—-1
(A) X X — X, D=diag(, ---,1).
§—& &—¢& Ev-1—E&y
1 2 N—-1 N 1 2 N—-1 N
(B) X X — X=>0 or X X— - X=—@,
& —& & —& Eyo1—Ey &y E—& & —& Ey-1—Ex &y
D=diag(d, ---,1,%).
1 2 N—-1 N
(C) X oo Xe—Q, D=diagQ, ---,1,2).
& —& &H—& Ey_1—Ey 2&y
1 2 Nz 5"
(D) _2/0 Ev-1—8y
X XX N i (eyory by =(zy, &),

& —& &H—& Eyo—E&y_ 1 O &y_+é&y
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12 N2 g

'—‘2 ® éN—l_EN
X——X— =X <_|N R O L
§—& &—& Ey,—Ey; ® Ey_+é&y

D=diagQ, ---,1).
(ii) Types F, and G,. For type F, (resp. G;), we normalize (, ) by
(atgy 0t) =2 (resp. (a5, @) = —2).
1 4 3 2

F) O—0=—=0 ®, D=diag (2,1,1,2).
1 3 2
(Gy ® —0O=0, D=diag(@,3,1).

We define the parity function p: [I—{0,1} as follows. If the i-th ver-
tex is O, ® or X, then we put p(e,)=0, 1 or 2—|(«;, @,))) /2 respectively. If
the N-th vertex of type B is @, then we put p(z,)=1.

Remark. In this note, we do not treat the Cartan matrix A of type
D2,1; ).

§3. Definition of Uy(&). Let ((@,1),S) p: II—{0,1} and A=
(@;)1<i,;<n be the root system, the parity function and the Cartan matrix
given in §2. Let 49(=S* and identify the elements H, e % and ae S by
THY)=0, ) 71e8). Put[X,Y],=XY—(—=1)r®r®"yYX and [X, Y]=[X, Y],
where p(X) and p(Y) are the parities of X and Y. Set

[m;nL:n: (@mem=t—t=m=mrY) (T =t Y) € C[t).

Put g=¢e"? and v, =q%%,

Let U,(§)=U,(G, A, p) be the h-adic topological C[[k]]-superalgebra
generated by the C-linear space 4 and the elements F,, F';, 1 <i<n) with
the parities p(H)=0 (H € 4) and p(E,)=pF,)=p(e,) A <i<n) and defined
by the following relations (3.1)—(8.5).

8.1) [H,H'1=0 for H, H' ¢ 9,

8.2 [H,E]l=a,H)E, [H,F,]l=—a(HF, for He 9 and 1<i<n,
8.3) [E, F,1=3,sh(hH, [2)|sh(hd,[2)  for 1<i, j<n,

3.4 (i) [E,E]=0 for 1<4, j<n such that a,,=0,

1+|ay,

(ii) Zjl (—l)y[1+laijl] Bt~ E B, =0 for 1<i£j<n
q%i

v=0

and ’p((xi) = 0,

) 7 k
dii) [l[E,E]l,El,,, E]l=0 for X —®—x (@<j<hk),
) 7 k or 1 J k
X—®==0 X—R=—e,

(iv) if Aisof type B, [[[E,_,, EN]DN’ E,], EN]v,vlzo’
(V ) if A is Of tYDe D, [[EN—2, E’N—l]’UN._l’ EN]’I)N= [[EN—Z’ EN]vN_l’ EN—I]UN?
(vi) if AisoftypeC,thenlE,, ,..,_ ., Ey]1=0, (resp. [E,, ,, E,_,]1=0

N—-2 N-1 N
or [ESN._M-EN_Q’ EN—1]=0) for X—®¢O
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N—-2 N-1 N N—-8 N—-2 N-1 N
(resp. @ —Q®&E=0O of X—0O0—QR&=O0)
where the elements E,, ..., F.,_,and E,, .., , will be defined
in the following section.
(8.5) the relations (3.4) with E,’s replaced by F',’s.
A Hopf superalgebraic structure of U,(G) is given by a coproduct 4°
defined by
A (H)=H®R1+1QH for H ¢ 4,

4(E,)=E,®1+exp (% H%)®Ei for 1<i<n,

45(F,) = F,®exp (—%H%)—H@Fi for 1<i<n.

Lemma 3.1. Put C={H e ¥|a,(H)=0 (1 <i<n)} and U, (Y =U,(4)/
U.(G)C. As a C-Hopf superalgebra, U,(G) |hU(G) is isomorphic to U(G).

By using the quantum double construction and Tanisaki’s argument in
[10] for U:(G), we can show the following theorem :

Theorem 3.2. U,(G) is topologically free as an h-adic C[[h]]l-module.

§4. Root vectors of Uy(@)* and U,(G)-. Let @, be the set of positive
roots related to /7 and let ¢, ={pe @, |B/2¢ @}. For f=cia,+ - --+c,a,€ P,
we put (B =c+ - +e¢,, cf=c, A<i<n), g(H=min{i|c,#0} and I'(H=
;U@ et Z. We define a total order on ¢, as follows. If o, pe @, we
say that a<pg if g(@)<g9(), V<l (P), c:,<ci_, and c;<ci. Let U.(9)*
(resp. U,(G)") be the unital subalgebra of U,(G) generated by E,’s (resp.
F.’s).

Definition 4.1. For ge @,, we define the elements E, ¢ U,(3)* and
F,e U.(G)- as follows. For type F, (resp. Gy), E,,.c and E’;,, (vesp. E,,,
and E;,) denote E...suicarsans 304 Elopiragrcasraas TSP Eogiipagica a0d
E:I,u1+bas+ca2)'

(i) WeputFE,=FE, A<i<n).

(ii) For ae @, such that g(a)<i¢ and a+a,e®, we put E,, =
[E,E,);-we. If Aisoftype B, i=N and a=¢ A<j<N-1),letE, =
@/+q ) 'E.,.,. If A isof typeD, i=N and a=ay.,, let K, =
(¢+aH'E.,,,. If A is of type F,, let E=(q+q ) 'Ely and Eu,=
(@+149)'Ely. If A is of type Gy, let Ey,=(q+¢ ) 'Ely and Ey=
(@*+14+9 %) 'E};,. Otherwise, put E,=FE".

(iii) For «, e @, such that g(@)=9(p), a<B, V'(P—V(x)<1 and a+p
e?,,weput B, ,=[E,, E,],-wpn. If Aisof type C (resp. D, F, of G;), then
E,.; is defined by (¢+¢ )'E’.,; (resp. (q+a ) 'E.., (*+q ) 'K, or
(@+1+gHE, ).

(iv) F,eU,(G) (ae@.) is also defined in the same manner.

§5. The main result. For « e @, we define an integer d, as follows.
If (¢,a)=0, we put d,=1. If A is of type G, and a=«,+2a;+a,, we put
d,=2. Otherwise, put d,=|(a, @)|/2.
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Definition 5.1. Assume that A is of type A,B,C or D. For a=c¢a,
+- e, €@, let p, =30 -, ¢, Wwhere p(?) denotes p(e;). For a=¢,+n,5
e?, 1<i<j<N, —1 _<__nj_<_1)’ put Va=(ni<zgzv (e, 8DV (ﬂj<ugN (8us 8)V)™.
For a e @,, we define the element X, € C[[h]]* as follows. For A of type B
(resp. Cor D) and a=¢,+¢, 1<i<j<N), we put X,=(—1)*W(ey, ¢y) (resp.
Vy OF (&y.1, Ey.)V34). For A of type D and a=2¢ (1<i<N, p(s,—¢y)=1),
we put X, =(y.1, éy.1). Otherwise, put X,=1. We let M, =(—1)ra@a-0/2,
X, vV,

Remark. In Definition 5.1, we assumed, for simplicity, A is of type
A,B,C or D. M, can also be defined in the F,- and G,-cases so that Theo-
rem 5.2 below is also true in those cases. In all cases, M,=(—1)*q® for
some integers a and b.

Let Uy(G) be the h-adic C[[R]]-Hopf algebra defined in §1. For this
Uy(G), we construct the universal R-matrix by using the quantum double
construction. Let @,(t)=[]7, (A —¢)/A—¢t) and let e(u; )=>, (u"/D,(t)
be the formal power series called the g-exponential. We note that E? =0 if
(o, )=0.

Theorem 5.2. Let R be an element of Uy(G)QUYG) defined by

R={ I;[ e((q*—q " IM'E ,QF ,¢*@; (=1)?@q=)}
a€PY

X { L > (—1)”'o°®a°’} .exp (% t0>

2 c,c’El0,1}

where t,= ", HQH, and H,’s are basis elements of I such that (H,, H,)
=d,;. (The product over « is taken with respect to the total order < de-
fined in §4.) Then (UYQ), 4°, R) is a quasi-triangular Hopf algebra.
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