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83. The Set of Primes Bounded by the Minkowski
Constant of a Number Field

By Makoto ISHIBASHI*®)

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1990)

Let & be an algebraic number field with degree m=7+2r,=>2 and
discriminant d,, where (,r,) denotes the signature of k. Write M,=
4/z)(m! /m™)v/|d,| (the Minkowski constant of k) and M(k)={p; rational
prime and p<M,}. For every prime number p, let p O, =P - - - Py be the
decomposition into prime ideals of O, (where O, denotes the ring of
integers in k, P,+#P, (i+j) are distinct prime ideals of O,). In general,
the prime number p is not necessarily irreducible element in O,. Let
Irr(0,) be the set of all irreducible elements in O,. Now we define nine
subsets Ay(k), A,(k), - - -, Ay(k) of M(k) as follows.

Ayk)={pe M(k); g=e,=1 (i.e. p remains prime in O,, so0) p € Irr(0,)}
A(B)={pe M(k); g=1, e,=m (i.e. p is fully ramified), p € Irr(0,)}
Ak)={peM(k); e,+ - +e,=m, 1<e, for some j, p € Irr(0,)}

Ayk)={pe M(k); g=m, e,=---=e,=1 (i.e. p splits completely),
p e Irr(0,)}
Aky={peMk); g=m, e,=---=¢,=1 (i.e. p is unramified), p e Irr(0,)}

A ={peM®); g=1, e,=m (i.e. p is fully ramified), p ¢ Irr(0,)}
Ak)={peMk); e,+ - - - +e,=m, 1 e, for some j, p ¢ Irr(0,)}

A(k)={peMkk); g=m, ¢,=- - - =e,=1 (i.e. p splits completely),
p & Irr(0,)}
A)={peMk); g=m, ¢,=---=g,=1 (i.e. p is unramified), p ¢ Irr(0,)}.

Then we have M(k)=Ak) UA,(K)U --- UA, k) (disjoint union). In case
m=2, the subsets A,(k), A,(k), A,(k), A(k) are of course empty.

The following three theorems are variations on the theme of T. Ono [2].

Theorem 1. If M(k)=A,(k), then the class number h, of k is one.

Proof. By the Minkowski lemma, the ideal class group H, of k is
generated by the classes of prime ideals over p e M(k). Hence we have
h,=1. Q.E.D.

Lemma 1. Let a0,=Q,---Q, be the decomposition into prime ideals
@, - - -, Q, are not necessarily distinct, a € 0,). Suppose that Q, belongs
to an ideal class x, € H, A1<i1<n) and x, denotes the principal class of H,.
Then a is an irreducible element in O, if and only if x,,- - -, +%, for every
proper subset {i,, - - -,4,} of {1, -+, n}.

Proof. See Lemma 1.2 in Czogala [1]. Q.E.D.

Theorem 2. If #(A, (k) UA (k) =1, then hy=m=(k : Q).
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Proof. Assume that p e M(k)NIrr(0,) and pO,=P:...Py. By Lemma
1, the ideals P, P;, - - -, Py, P}'P,, - - -, P3Pp, - - ., PPPp- . . Py3P,, - - -, PPPY
-« Py2Py are non-equivalent. Hence we have e, + - - - +e,<h,. Therefore,
p e A,(k) UAy(k) implies e,+ - - - +e,=m. This completes our proof.

Q.E.D.

Theorem 3. Let V, be the family of all algebraic number fields k
with a fixed degree m and M,=3. For each keV,, write d,=(—1)"p%- -
DEEDI by 0y DI, Where p,; denotes j-th rational prime (j=1,2, - --) and
Doy SEM < Dyys1 (01 - <Dbyyy). Suppose that W,={keV,;e,u-1=1 and
e,m=1}. Then W, is a finite set.

Proof. From Tschebysheff’s theorem (i.e. p,,,<<2p,) and p,+20=p,,,
(b=1,8=2), it follows that

(m! [m™)pg- - DEE Doy +20)7% -+ - Dy + 2D (1)) 08 <4ADi 1y
Hence we have
P PUE R DR TIPEE T Dy + 2D )7 ‘(ps(k)+2bc(k))f“k’<8m2m/(m D

Thus s(k), t(k), e, A<i<sb), f; AZi<tk), by, -+, by, are bounded.
Therefore, the absolute values of d, (ke W,) are bounded from above by a
positive constant (independent of k, and only dependent on m). Since there
exist only finitely many number fields with a fixed given discriminant, we
know that W, is a finite set. Q.E.D.
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