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81. Mordell-Weil Lattices and Galois Representation. II

By Tetsuji SHI0ODA
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(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1989)

This is a continuation of the previous note [0] and we use the same
notation and the references given there. Detailed accounts will be published
elsewhere.

2. Rational elliptic surfaces. From now on, we suppose that S is a
rational elliptic surface with a section O ; then C=P!, K=FI(t) (¢t: a variable
over k). The assumption (x) on the non-smoothness of f: S—C is automa-
tically satisfied. For such a surface S, the arithmetic genus 2=1 and
every section of f is an exceptional curve of the first kind on S, and con-
versely. The Néron-Severi group NS(S) is a unimodular lattice of rank
p=10, and (1.8) implies r+ 2 },cz(m,—1)=8, and hence »<8.

For =8, 7 or 6, the structure of the Mordell-Weil lattice E(K) is com-
pletely described by the following theorem :

Theorem 2.1. (i) If f has no reducible fibres (R=¢), then r=8 and

E(K)=E(K)~ E,.
(ii) If there is only one reducible fibre f~'(v) and m,=2, then r="T and
E(K) ~ E¥
U U index 2.
EK)~ FE,
(iii) If there is only one reducible fibre f~'(v) and m,=38, then r=6 and
E(K) ~ E¥
U U index 3.
E(K)~ E,
(iv) If there are only two reducible fibres R={v, v’} with m,=m, =2,
then r=6 and
E(K) ~ D¥
U U index 4.
EK)'~ D,

In the above, E,, E,, E, and D, stand for the root lattices of designated
type and * denotes their dual lattices (cf. [1, Ch. 6], [2, Ch. 4]). In parti-
cular, E; is a positive-definite even unimodular lattice, which is unique up
to isomorphism. Of course, we could continue the above result to lower r;
for instance, if $ R=1 and m,=4 or 5, then E(K)~D{ or A¥, and so on.

Now, for any P ¢ E(K), P-+0, we have by (1.12):

0 case (i) or Pc E(K)°
@D (P, Py=242p0)—{/Z el PelU)-HEY
2/3 case (iii), "

lor1/2 -case (iv), ”
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This shows, in particular, that E(K) is torsion-free in these cases. In
general, we call P ¢ E(K) a minimal point or minimal section if (P, P> has
the smallest positive value in the Mordell-Weil lattice.

On the other hand, we know the following table ([11, [2] or [6, Ch. 4]):

Table
2.2) Es E; | Ef | By | E¥ | Dy D¥
determinant 1 2 1/2 | 38 1/3 | 4 1/4
minimal norm 2 2 3/2 | 2 4/3 | 2 1 (3/2)
#min. vectors 240 126 | 56 72 54 60 12 (64)
Automorphisms W (Ey) W (E) W (Ee){£1}| W (Dg){e}
#Aut 21435527 210345.7 27345-2 25.6!.2

In the table, W(E,), etc. denote the Weyl groups.

Theorem 2.2. The number of the minimal sections of the Mordell-
Weil lattice E(K) is 240 if r=8, 56 if r="T, 54 or 12 if r=6. They contain
o minimal set of generators of E(K) in case (i), (ii) or (iii), while the next
minimal sections of norm 3/2 are also needed in case (iv).

Corollary 2.3. The Mordell-Weil group of a rational elliptic surface
s generated by the sections P with (P, P><2, at least if r>6.

Question 2.4. Is the Mordell-Weil group of any elliptic surface gen-

erated by the sections P with (P, PY<21, X being the arithmetic genus of
the surface?

As for the torsion, we have:

Proposition 2.5. The order of E(K),, for a rational elliptic surface
is one of the following values: 1, 2, 3, 4, 5, 6, 8 or 9. Conversely, each of
these orders can occur.

3. Weierstrass form. Let us make the results in § 2 more explicit by
writing the equation of the elliptic curve E over K=1k(t) in the Weierstrass
form. For simplicity, we assume char ()2, 3. Suppose that the minimal
Weierstrass equation of E over K is given by
3.1 y=a'+pt)x+qt), p(t), q(t) e klt].

Then the Kodaira-Néron model f: S—P! is a rational elliptic surface if and
only if deg p(t)<4, deg q(t)<6 and d=4p(t)*+27q(t)* is not a constant in k.

Lemma 3.1. Let P=(x,y) e E(K), P+0O. Then the section (P) is
disjoint from the zero section (O) if and only if x and y are polynomials in
t of degree <2 or <3, 1.e., of the form:

3.2) r=gt*+at+0b, Yy=ht*+ct*+dt+e,
with a, b, ---,9, hek.

By (2.1) and Theorem 2.2, we have:

Theorem 3.2. Let f: S—P* be a rational elliptic surface.

(i) If f has no reducible fibres, there are exactly 240 points P=(x, y)

of the form (3.2), and they contain a set of 8 free generators of the Mordell-
Weil group E(K).
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(ii) If there is only one reducible fibre f~'(v), we may toke v=oco. In
case m., =2, then there are exactly 56 points (x,y) of the form:
(3.3) r=at+0b, y=ct'+dt+e,
and they contain a set of 7 free generators of E(K).

(i) Similarly, if f-'(co) is the only reducible fibre and m. =3, then
there are exactly 54 points of the form (3.3), and they contain a set of 6
free generators of E(K),

(iv) If there are only two reducible fibres, we may asswme they lie
over v=0 and oco. In case my=m,=2, then there are 12 points of the form
(3.3) with b=¢e=0 and 32 points of the form (3.3) with be+0. They con-
tain a set of 6 free generators of E(K).

In general, for an elliptic surface f: S—C, let f~*(v)* denote the smooth
part of the fibre f-'(v), which is a commutative algebraic group. Let
sp,: E(K)—f~'(v)* be the specialization homomorphism: for any P e E(K),
sp,(P) is the unique intersection point of the section (P) with the fibre f-*(v).

Lemma 3.3. Suppose that f~'(o0) is a singular fibre of type II (a ra-
tional curve with o cusp). Then f~'(c0)* is the additive group G,, and the
specialization map sp.,: E(K)—G, (k) takes the point P of the form (3.2) to
sp.(P)=g/h (note g-h+0 in this case).

Lemma 3.4. In case F(K)~FE,, the 240 minimal sections are mapped
to 240 distinct values of k under the specialization map sp...

4. Examples. Let us give some explicit examples, chosen mostly
from elliptic surfaces of Delsarte type (cf. [10], [11]). These examples
alone provide rather interesting extensions of cyclotomic fields, having the
Galois representation of type E,, - - . on the Mordell-Weil lattice (cf. the part
IIT). Moreover, in such an extension, we can explicitly write down the
minimal sections (and hence the generators) of the Mordell-Weil group, or
equivalently, the exceptional curves of the first kind on the elliptic surface.
If we change the viewpoint, we have a systematic method to realize the
lattice of type E,, E,, etc. in certain cyclotomic fields or their extensions.

Assume for simplicity that char(k)=0, and let 7ek, r+0, unless
otherwise stated. As before, let K=1k(t), and &, =e*¥/™.

“4.1) Y=x+7re+t° (ef. [11])

The singular fibres are all irreducible: indeed, there are one of type II
at t=o0, ten of type I, (a rational curve with a node) at t£c0. Hence
r=28, and E(K)~FE,. The specialization map sp., gives an isomorphism of
E(K) onto Z[Z,1(r/ G)™, where G e Q({,) is independent of 7 and (v/ )™ is
a fixed 20-th root of 7/G. The 240 values corresponding to the minimal
sections are given by

7. ([ G)VP (1<i<12, 1<5<20),
where 7, are certain units (< 8) or 5-times units (¢>8) in Q(&,y)-
4.2) Y=2'+r+t
4.3) Y=u+Tt+1°
In both cases, there are six singular fibres of type II, and hence E(K)=
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E,. The specialization map sp., gives an isomorphism

EK)=ZIC /@™ or ZI[Gr /Gy ™
where G € Q(&;) or Q(&,). In all three examples, the isomorphism is com-
patible with the action of the Galois group. Geometrically, it shows that
the monodromy around 7y =0 is finite and of order 20, 30 or 24. Note that,
for 7 =0, the Mordell-Weil group degenerates to O.
4.9 YV=a'+re+t°

All the singular fibres are of type I, and hence »=8. This example is
treated in [8], where 8 sections generating a subgroup of index 4 in E(K)
are given. Of course, one can give full generators.

(4.5) Y=a'+T1te+t°

This has a singular fibre of type III (two smooth rational curves tan-
gent at a common point) over t=0, and other fibres are irreducible. Hence
r=7 and E(K)~FE*. The specialization map sp..: E(K)—Z[{,J(—1"" is
surjective, with kernel of rank 1, but it maps the 56 minimal sections to
distinct values.

(4.6) Y=+ rt"+t

There is a singular fibre of type IV (three smooth rational curves meet-
ing at one point transversally) over ¢=0, one of type II over {=o0 and six
of type I,. Hence r=6 and E(K)~FE¥. The specialization map sp, gives
an isomorphism:

EE)=ZILIT/ @ (Ge Q).
4.7 Y=o+ + )+t

There are two reducible fibres over ¢=0 and oo, both of type III, and
other fibres are irreducible. Hence *=6 and E(K)~D¥.
4.8) Y4rroy=2+1°

This has a singular fibre of type I, (five smooth rational curves forming
a pentagon) over t=0, one of type II over ¢=c0. We have r=4 and E(K)
~A¥. Further the specialization map gives an isomorphism sp,: E(K)~
ZIg) -1,

(4.9) Y4rey=a'4t"

This elliptic surface is rational only for m<6, and a K3 surface for
T<m<12. For m=8, 9, 10 or 12, these elliptic K3 surfaces give examples
for which the Mordell-Weil lattice E(K)/(tor) is not equal to the dual lattice
of the narrow Mordell-Weil lattice. Hence the assumption of Theorem 1.4
that the Néron-Severi lattice be unimodular is not superfluous.
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