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59. Recurrent Fuchsian Groups whose Riemann Surfaces
have Infinite Dimensional Spaces of Bounded
Harmonic Functions
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Department of Mathematics, Faculty of Science, Kyoto University

(Communicated by Koésaku Yosipa, M. J. A., Sept. 12, 1989)

§1. Introduction and statement of results. A Fuchsian group I’
acts on both the unit disc D and on the unit S*. Such a group is said to
be recurrent if, for any positive measure subset ACS?, ${rel : m(ANTA)
>0}=oc0. Such groups have been considered as a subject of study in their
own right primarily since the appearance of Dennis Sullivan’s profound
paper [9].

The function theory corresponding to such groups is not yet under-
stood. For example, if R=D/I" (we will use this notation throughout
this note), the structure of the spaces of bounded harmonic or bounded
holomorphic functions are not yet clear. Taniguchi constructed examples
of Fuchsian groups such that the space of bounded harmonic functions on
R, HB(R), is finite dimensional [11].

Now bounded harmonic functions on R arise from integrating I'-
invariant measurable functions on S* against the Poisson kernel and pro-
jecting down to R from D. We define harmonic measure class on R to be
the g-algebra of I'-invariant measurable subsets of §', with the measure
m, on S associated to a point pe D just the visual measure from p with
respect to the hyperbolic metric on D.

It is easy to see that the notions of positive measure and zero measure
sets are well-determined in this measure class (although the measure of a
positive measure set is only defined if it is 1 or 0). Furthermore, the notion
of an atom in this harmonic measure class is well-defined as an ergodic
component with positive measure. Given the definition of Oy, from [2,
pp. 119-128], one easily deduces.

Lemma 1. R e Oz if and only if I' decomposes S*, up to measure
zero, into a union of positive measure ergodic components for its action.

The proof is left to the reader. Given Lemma 1 and his examples,
Taniguchi proffered

Conjecture [1, p. 4]. If I' is a recurrent Fuchsian group then the
Riemann surface R=D|I is in Ofp.

This note concern two points. The first is that the conjecture is false.
Let K denote the usual middle thirds Cantor set, and R, denote the Riemann
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surface C\K. Let I', denote the Fuchsian group such that D/I'y=Ry.
We will sketch in §2 a demonstration of

Theorem 1. The Riemann surface C\K is not in O3 while its
Fuchsian group I'y is recurrent.

The second point is the following: QR is said to be in 0%, if and only
if up to measure zero the action of I" splits §' into at most n disjoint
positive measure ergodic components. Taniguchi constructed surfaces in
0%\ O3 (i.e. the group action has precisely n ergodic components). This
construction generalizes after but an observation to generate straightfor-
ward examples in Oz5z\U ez, O%s. Compare with the example in [38, §24].
This is presented in §3. The examples are

Theorem 2. If R is a finite volume Riemann surface and R’ is an
abelian cover of R of rank at least 3, let R be a Z-cover of R’ correspond-
ing to a simple closed curve y CR’. Then R"” e Ozp\Unez, Oks.

I had a long conversation with Peter Jones regarding this material,
from which I learned most of the classical analysis associated with the
problem. Dennis Sullivan pestered me constantly to make sure I knew
what I was talking about, aside from being a source of great inspiration
and encouragement. And of course my Japanese hosts at Kyoto University
are most humbly thanked for their generosity during my visit. Finally,
I’d like to thank Masahiko Taniguchi for reading a preliminary version of
this manuscript, suggesting changes, and finding some of the references
for me.

§2. Theorem 1. A sketch of the proof. The theorem will follow
naturally as a consequence of several lemmas. Each of these lemmas is
well-known and hence only references are given.

Lemma 2. If CCC is compact, and if the Riemann surface C‘\C has
a Green’s function, then it has no atoms in harmonic measure class.

This is an immediate consequence of [2, Folgesatz 11.9] or [10, Theo-
rem III.5F].

Let & be the Dirichlet fundamental domain for I”, and cl (&) the closure
of ¢ as a subset of C. Let F*=cl(F)N.S'. Sullivan established

Lemma 3 [9, Theorem 4, p. 488]. I is recurrent if and only if the
Lebesgue measure of F* in ' is 0.

Now let CCR be compact, containing at least two points. The domain
R,=C\C is called a Denjoy domain. Let I', be the Fuchsian group such
that R,=D/I';, and L, F% as above. We immediately have

Lemma 4 (due to Beurling (see [8, §41 or [T])). ¥ has null angular
measure if and only if the linear measure of C is null.

Combining these three lemmas one sees

Theorem 1. If CCR is a compact null set such that R, has a
Green's function then I'; is recurrent and R, has no atoms for harmonic
measure class and is thus not in O%p.

Our desired result is an immediate corollary as the fact that é’\K
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supports a Green’s function is standard [12, ch. III, §4].

§3. Construction of surfaces in O55\U,cz,0%5. Lyons and Sullivan
[5] extend a result of Mori [6] to show that abelian covers of rank at least
three of closed Riemann surfaces carry Green’s functions but have no
positive nonconstant harmonic functions. Hence the space of bounded
harmonic functions on such a Riemann surface is trivial, i.e. just the con-
stants. These furnish an abundance of examples of recurrent groups in
045\ 0, (again using the notation of [2], [3]). By considering finite covers
of such surfaces, Taniguchi [11] constructed his examples of surfaces in
01:\0%% for all n>2.

In the same fashion we now generate surfaces in O3z\U,cz,O%s. Let
R, be a hyperbolic Riemann surface of finite volume, with 2g+n>4 (we
drop the subscripts for convenience). Then R=D/I'. We will work
strictly with homology covers as this is notationally a bit easier. The
homology cover of R is R'=D/[I’,I'], so that R’ is a regular cover of R
with group I"=I"/[[, I']. Thus R=QR’/I”. Our surfaces are Z-covers of
such R’.

Take a countable number of copies of this homology cover, R, index-
ed by Z, and break each open along their copies of a simple closed geodesic
7. Label the two sides of this cut on R/, by 7; and 7,. Now glue 7;; to 7,
for each n e Z, thus obtaining a Z-cover of R’. This surface is our desired
R//‘

Theorem 2. R” € 035\Unez,O%s.

To see that R” € O35\ ez, 0%5, We pick a basepoint p” e R and con-
sider the unit tangent circle T}.R"” to R at p’. We consider this as the
space parametrizing directed geodesics through p”, with 7, being the geo-
desic through p” in direction x € T}, R"”. Let

O, ={xe T, R": 1, eventually leaves any compact subset of R"}.

It is well known [4] that R has a Green’s function if and only if m,(0,.)
=1. This is clearly the case, as R” covers R’ which has Green’s func-
tion.

But more importantly we see that for almost all x the geodesic 7, is
eventually in R, for some n. This is because on projection down to R’
almost all geodesics intersect 7 only finitely often. Thus all harmonic
measure on R” comes from the contributions at infinity of each R,. That
each of these is atomic, hence completing the arguement, is evident by
group invariance.
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