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Introduction. In Yamamoto [7] and Shibata and Soga [4] we have
known that we can construct the scattering theory for the elastic wave
equation corresponding to the theory for the scalar-valued wave equation
formulated by Lax and Phillips [1,2]. On Lax and Phillips’ formulation
Majda [3] obtained a representation of the scattering kernel (operator),
which is very useful for consideration on the inverse scattering problems (cf.
Majda [3], Soga [5, 6], etc.). In the present note we shall give the similar
representation of the scattering kernel for the elastic wave equation con-
sidered in Shibata and Soga [4].

§1. Main results. Let 2 be an exterior domain in R? (x=(,, - - -, 2,))
whose boundary o2 is a compact C~ hypersurface. Throughout this note

we assume that the dimension » is odd and >3. Let us consider the elastic
wave equation

(af— il a/ijal‘ta.'tj>u(t, x)—_— 0 in R X .Q,

i,j=

Bu(t, 2x)=0 on RXa4,

u(0, )= fi(x), 0,u(0,x)=f,(x) on Q.

Here, a,, are constant n X n matrices whose (p, ¢)-component a,,;, satisfies
(A.1) Qipjqa=Uprja=®jqips 44,0 9=12,-.--,n,

n n
(A.2) DN G0 2, el for Hermitian matrices (e,,),
©P57,q=1 i,p=1

1.1

<.

(A.3) > a.,6:&; has characteristic roots of constant multiplicity

i,7=1
’ for 5—_—(51’ "',fn)GRn—{O},
and the boundary operator B is of the form
Bu=ul,, or .Zlvi(x)auaz,ulag,

1=

where y=(y,, - - -, v,) is the unite outer vector normal to 02. We denote by
U(t) the mapping: f=(f, fo—lt, -), d,u(t, -)) associated with (1.1), and
by U,(t) the one associated with the equation in the free space (2=R").

Under the assumptions (A.1)-(A.3) it has been proved in Shibata and
Soga [4] that the wave operators W.=1im,_ .. U(—t)U,t) are well defined
and complete (cf. §3 of [4]). Let {3,(8},.1,....c A, <---<2,) be the eigen-
values of >7,_,a,,&&,, and let P,(&) be the projection into the eigenspace of
2,8). For the data f=(f, f2) (€S) in the free space, let us set

T f(s, w)= Zﬁ 21(@)"*P (@)(— 2,(0)"5 " Fi 4627 f)(Ay(0)s, @),
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where f (s, w)=j f:@)dS,, (s,w) e RXS*'. Then T, becomes the trans-

lation representation for the equation in the free space (cf. § 2 in Shibata

and Soga [4]). We define the scattering operator S by S=T ,W:'W_T;?, as

Lax and Philips [1, 2] did. S is a unitary operator from L*(R X S™!) to itself.
The main purpose of this note is to give a representation of S similar

to Majda’sin[3]. Derivation of this representation is based on the following
Theorem 1. Let (A.1)-(A.3) be satisfied, and assume that

(A.4) every slowness hypersurface 3,={&: 2,(&)=1} is strictly convex.

Then, for any f with T,f € S(RXS™*) we have

d
T.f(s, 0)=1lim (zt)-07 > K, (0)'*]0:2,(6)| "D/ ,(6)~ En+1r
t—+oo =1

(U0 )2712,(0)1*t0:2,(0) + 82,(6)' /),
where K (0) denotes the Gaussian curvature of 2, at 2,(6)'6.
Let v,(t, 2 ; w) be the solution of the equation
Po— 3 @,0,0,0=0 in Rx 2,
iy5=1
By=—2""(—2a1)'""2(w) "*B{6(t — 2,(0) "0 - x)P,(w)} on RXaQ,
v=0 if ¢ is small enough.
v,(t, ¢ ; w) is an nXn matrix of C~ functions of x and » with the value of
the distribution in ¢.
Theorem 2. Let us assume (A.1)-(A.4), and set

Sy(s, 0, w)= i J.aa 2,0) - "P (@) @7*Nv,)(2,60)"*0-x—s, 2z ; »)

—2,0)*N(@- 2)P(0)(@; v )(2,(0)7 "0 - v —s, @ ; w)}dS,,
where N=37,_1v(®)a,0,,. Then we have

o, =[] Ss—t,0,0k(t, )dtdot+k(s,0), ks, 0) e CrRX S,

§2. Proof of Theorem 1. For the scalar-valued wave equation Lax
and Phillips [1] obtained a theorem similar to Theorem 1 (see Theorem 2.4
in Chapter IV of [1]), but for the proof we need more precise analysis. A
key lemma is the following

Lemma 1. Let pand ¢ be any elements in R" with y+0. Then, for
any k(s, w) e S(RXS™') we have

j o Y2kt ()0 -+ 2 (0) 0 - {—t, w)dw
sn—1

=227 /|| DI {Re(tA, (0w} - n+ 2,0 Pl -L—t, 0])
K (07)7 102, 2,(w}) "+
+2(—2x/[n| )"V k(2 (07) 07 -+ 2, (7)o - L1, w])

K (07)7110:4,(07)|7 2,(07) "D 40t~ "7) as |t|—o0,
where o] (resp. ;) denotes the point in S*' at which 2,(w) 0.y is maxi-
mum (resp. minimum).

In view of Theorem 2.1 in Shibata and Soga [4], we see that the limit
in Theorem 1 is equal to the limit of
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d
2 2nae A 3 KO 02,0 40 [ 1) Pw)

0T f(u0) e - 2712,(0) 7 10:2,(0) + Au(w) e - 4,(6)' 50— T, @)da
(as |t|—>o0). Applying Lemma 1 to each integral in (1.2) yields that (1.2)
converges to T,f (s, 0) as |t}—>oo. Thus Theorem 1 is obtained.
§3. Proof of Theorem 2. The methods of the proof are improve-
ments of those in Soga [6]. Originally, the idea is due to Majda [3].
Lemma 2. Let the data f in (1.1) satisfy T, WZ'f(s, 0) € C(RXS™ ),
and set k=T ,W='f. Then we have

CON@=2"C" 3 [ 1) P @0 @) -0t o)do

d
+35 ([ s s, s o), 0)dsdo.
Jj=1 RxSn—1
Lemma 3. Let v, 2) be an nxXn matric of C° functions of x with
the value of the distribution in t and satisfy
{affv—i‘z] 0,0,0,0=0  in RX 2,

=1
v=0 if t<r,

(for some constant r,). Set N=37, ,v,(®)a,d,. Then we have
lim (zz)®-D2K ()7 8:4,(0)| "D 2,(6) - ¢+ D/

Dy (E 7, 2712,(6)"20,2,(0,)e -+ 52,(6)6)
=j PONI,0) 0 -5 —s-+t, 2)
]

—2,(0)"AN@ - )P, (0); v (,0) "0 - x—s+t, x)}dS,.

Lemmas 2 and 3 are extensions of Lemmas 1.8 and 1.4 in Soga [6]
respectively. The proof of Lemma 2 is similar to that of Lemma 1.3 in [6],
but Lemma 3 cannot be obtained in the same way as Lemma 1.4 in [6], the
reason of which is that the forms of the fundamental solutions for the
corresponding wave equations are fairly different.

Theorem 2 is derived from Theorem 1, Lemma 2 and Lemma 3 by the
same procedures as Theorem 1 in [6] was derived from Proposition 1.2,
Lemma 1.3 and Lemma 1.4 in [6].
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