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Introduction. In Yamamoto [7] and Shibata and Soga [4] we have
known that we can construct the scattering theory or the elastic wave
equation corresponding to the theory for the scalar-valued wave equation
ormulated by Lax and Phillips [1, 2]. On Lax and Phillips’ formulation
Majda [3] obtained representation o the scattering kernel (operator),
which is very useful or consideration on the inverse scattering problems (c.
Majda [3], Soga [5, 6], etc.). In the present note we shall give the similar
representation of the scattering kernel for the elastic wave equation con-
sidered in Shibata and Soga [4].

1. Main results. Let 2 be an exterior domain in R (x--(xl, .., xn))
whose boundary 39 is a compact C hypersurface. Throughout this note
we assume that the dimension n is odd and >__ 3. Let us consider the elastic
wave equation

i,j =1
(1.1) Bu(t, x)-- 0 on R 3/2,

(u(0, x)=f(x), 3tu(O, x)--f2(x) on/2.

Here, a are constant n n matrices whose (p, q)-componenta satisfies
(A.1) a,q--a,q=a.qi,, i, ], p, q= 1, 2, ., n,

(A.2) aipjq$gqip I1 for Hermitian matrices (),
i,p,j,q=l i,p=l

(A.3) , a has characteristic roots of constant multiplicity
i,j =1

for =(, ..., n) e R-{0},
and the boundary operator B is of the orm

i,j =1

where ,--(,, ..., ,) is the unite outer vector normal to 3/2. We denote by
U(t) the mapping: f--(f, f).--+(u(t, .), 3u(t, .)) associated with (1.1), and
by Uo(t) the one associated with the equation in the ree space (/2= R).

Under the assumptions (A.1)-(A.3) it has been proved in Shibata and
Soga [4] that the wave operators W+/---lim+/- U(-t)Uo(t) are well defined
and complete (c. 3 of [4]). Let (()}.__,..., (...) be the eigen-
values o ,.__a, and let P() be the projection into the eigenspace of

(). For the data f-= (f, f:) ( e ) in the free space, let us set
d

Tof(S, o)-- 2((o)l/tP((o)( 2(O))/ZJn+)/?--Jn-z)/?z)(2(Og)/ZS, 09),
j=l
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where f(s,o)=| f(x)dSx, (s,o)eRS-1. Then To becomes thetrans-
J

lation representation or the equation in the ree spce (c. 2 in Shibat
and Soga [4]). We define the scattering operator S by S= ToWTW_T;, as
Lax and Philips [1, 2] did. S is a unitary operator from L(R Sn-‘) to itself.

The main purpose of this note is to give a representation of S similar
to Majda’s in [3]. Derivation of this representation is based on the following

Theorem 1. Let (A.1)-(A.3) be satisfied, and assume that
(A.4) every slowness hypersurface E={" 2()=1} is strictly convex.
Then, for any f with Tof e (RSn-) we have

d

Tof(S, t)= lim (rt)
t-,+o j=l

(Uo(t)f)2(2- () mr3 ()+ s2 ()1/0),
where K(O) denotes the Gaussian curvature of at ()-/.

Let v(t, x;) be the solution of the equation

v--
, a3,3v= 0 in R

i,j =1

By=--2-1(--2zi)-(o)-n/4B((t--(o)-l/%.x)P(o)} on
v--O if t is small enough.

v(t, x;w) is an nn matrix of C unctions of x and w with the value of
the distribution in t.

Theorem 2. Let us assume (A.1)-(A.4), and set

So(s, t, )= f (O)-/4{P(t)(3-Nv)((t)-/t x-s, x (0)
i,j =1 J

a,(8)-’/2N(6, x)P,(#)(37-v)(a,()-’/zO x-- s, x o)}dSx,
where N=,.,y=u,(x)a,. Then we have

(Sk)(s, O)=ff So(s-t,O,o)k(t,(o)dtdo+k(s,O), k(s, oo) e C(RS-).
Jd

2. Proof of Theorem 1. For the scalar-valued wave equation Lax
and Phillips [1] obtained a theorem similar to Theorem I (see Theorem 2.4
in Chapter IV of [1]), but for the proof we need more precise analysis. A
key lemma is the following

Lemma 1. Let y and be any elements in R with veO. Then, for
any k(s, o)e S(RSn-) we have

3-)/k(t(w)-I/%.
sn-

2(2/I ] t)(-)/(k(t(o])- .-t,;)
K(o;)-’/ e2(o.,;)I -’ (0);) (n+1)/2

+ 2(-- 2lllt)(n-’)/k(t(o7)-’/%7.
K(o;)-’/la(oV)l-’ (oo;)(+’)/2}+O(t-/) as Itl-+c,

where w (resp. wT) denotes the point in Sn- at which a(w)-/oo. is maxi-
mum (resp. minimum).

In view of Theorem 2.1 in Shibata and Soga [4], we see that the limit
in Theorem 1 is equal to the limit of



No. 3] Representation of the Scattering Kernel 67

(1.2) 2_(1-)/t(-1)/2

_
Kj(O)I/ j()-(2n+l)/4 2()-/p(w)

j,l=l S

3n-1)/Tof((O) -/%" 2-’2()-/t3 (0)+ (W) -’/%" 2(0)’/sO t,
(as [t[). Applying Lemma 1 to each integral in (1.2) yields that (1.2)
converges to Tof(S,O) as ]t]-. Thus Theorem 1 is obtained.. Proof of Theorem 2. The methods of the proof are improve-
ments of those in Soga [6]. Originally, the idea is due to Majda [3].

Lemma 2. Let the data f in (1.1) satisfy ToW:’f(s, w)e C(RZn-),
and set lc=ToW:’f. Then we have

(U(t)f)(x)=2-’(2u)-n 2(w)-n/P(w)on-1)/k(2(w)-/X.w--t, w)dw
=1 sn-

j=l RxS

Lemma3. Let v(t,x) be an nXn matrix of C funetions of x with
the value of the distribution in t and satisfy

Ov-- aOx,Ov=O in RX 9,
.,j=l

if
(for some constant r). Set N=:=,(x)a3. Then we have

lim ()(n-)/K(O)/ [3(0) (+)/ (0)
-l)/v(t+ r, 2-2(8)-/32(0)r+= {P(O)NO2-v(2(O)-/O. x--s+ t, x)

2(O)-/N(O z)P(O)O2-v(2(O)-/O z-- + t,
Lemmas 2 and 8 are extensions of Lemmas 1.8 and 1.4 in Soga [6]

respectively. he roof of Lemma 2 is similar o ha of Lemma 1.8 in [6],
bu Lemma 8 eanno be obtained in he same way as Lemma 1.4 in [6],
reason of which is tha the forms of he fundamental solutions for
corresponding wave equations are fairly different.

heorem 2 is derived from heorem 1, Lemma 2 and Lemma 8 by the
same roeedures as heorem 1 in [6] was derived from Proposition 1.2,
Lemma 1.8 and Lemma 1.4 in [6].
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