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1. Introduction. This paper deals with the spectral resolution of a
certain summation of series, the final aim being to give a method of solving
recurrences involving the summation by means of its spectral decompo-
sition. Let L denote a real linear space composed of all sequences of real
numbers, and a small letter, for example, a is used to mean its element
{a, a, ...} (a e R). Our summation T is a linear transformation on L
defined by

_.1 ( i )]
(i-1,2,...),( 1 ) T" a.. b, b=-

where d is a positive number. This summation of series is closely related
to the Euler summation [1].

2. Spectral resolution o Td. In this section, we prove that {T}>0 is
a representation of a multiplicative group, and derive the spectral resolu-
tion with the use of its group property. Let us start by showing a lemma.

Lemma 1. Let dl, d2 and d be positive numbers, and we have

T T:= T:, T,=I, (T)-i=
Proof. Suppose that

b= 1 (i) and c- 1 (k)(di--1)-bd (d- 1)-a

Then, a slight calculation leads to

c (dd-- 1)-a.
(dd) = ]

which proves T, T=T. The remaining two are obvious.
This lemma shows that each T is a non-singular transformation and

urther the amily {T}>0 is a representation on L o a Lie group (R+, x).
Exchange the parameter d for t subject to d=e and calculate d/dt(T[a])]=o
ormally. Then, we have the ormal generating operator of T as follows;

( 2 ) --a 3... +(2a--2a)+... + (na_--nan) a+’’’"3a 3a
For the time being, discussion is made on an m-dimensional linear

space L which is o the first m terms a= {a, ..., a} of every element of L.
It is easy to see from the definition (1) that the action of T can be restricted
on L, whose restriction we denote by T. Then, T gives an R+-action on g
and its generator is expressed as a sum o first m components of (2). Since

T is a linear transformation, it is expressed as an m-th order matrix,
which is obtained by means of the generator as ollows"
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(3.a) exp t =P p_l,

m -m 1/d
where

1)

m m m

Here, m is chosen arbitrarily, and any (i, ]) component of both (3.a) and
(3.b) turns out to depend on i and ] only. By letting m-+c, each column
vector of P, which is an eigenvector of (3.a), makes us pay attention to the
following sequence of numbers;

--1

Theorem Z. With eeet to , it hod that Te[a("]=(1/d)e((=l,
2,...).

Since slight calculation verifies the equality, we omit he roof. It is
to be noted hat each is independent of the value of d. Next, we show
that {a} thus obtained forms a basis of L.

0 belo toLemma 3 Let
L. O the eotrarg,
ad the ezaio eoeNeiet O i give b

0 =5
g=l

Proof. he former assertion is obvious, for due
is a finite sum of real numbers. Concerning the latter one, sub-

stitute (5) into ::1a(), and we can see that its k-th term is given by

(_)_ s k =(-)- s k k =.
Now, we are in a position to derive the spectral resolution of T. As

is shown in the above lemma, the linear space L is a direct sum o all
eigenspaces o T. Each eigenspace does not depend on the value o d.
The projector P rom L onto a one-dimensional subspace generated by
(a()} is immediately obtained from (5), and we have the final result.

Theorem 4. The summation T is expressed as T==(1/d)P,
where P is a projector given by

()()(P,[I)=
(i<).

With reeet to P,, it hold that PP=,P, ag L1P,=I.
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3. Remarks. By means of the spectral resolution of T, we can
define a linear operator (Ta) by not necessarily using the Dunford integral
formalism. Here, ? is an analytic function whose pole is not equal to 1/d
(s_l). If no zero point of is equal to lid, too, the inverse of (T) is
immediately obtained, so that we can obtain the solution of the recurrence
of the form (T)[]=u, where is unknown and u is given. This type of
recurrence is treated, for example, in [2]. Also, it can be verified that T
is a regular transformation when d_ 1, while each projector Ps is neither
regular nor normal.
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