106. Spectral Resolution of a Certain Summation of Series

By Shigeru MAEDA

Department of Industrial Management, Osaka Institute of Technology (Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1988)

1. Introduction. This paper deals with the spectral resolution of a certain summation of series, the final aim being to give a method of solving recurrences involving the summation by means of its spectral decomposition. Let L denote a real linear space composed of all sequences of real numbers, and a small letter, for example, a is used to mean its element $\{a_1, a_2, \dots\}$ $\{a_i \in R\}$. Our summation T_a is a linear transformation on L defined by

(1)
$$T_a: a \mapsto b, \quad b_i = \frac{1}{d^i} \sum_{j=1}^i {i \choose j} (d-1)^{i-j} a_j \quad (i=1,2,\cdots),$$

where d is a positive number. This summation of series is closely related to the Euler summation [1].

2. Spectral resolution of T_d . In this section, we prove that $\{T_a\}_{a>0}$ is a representation of a multiplicative group, and derive the spectral resolution with the use of its group property. Let us start by showing a lemma.

Lemma 1. Let d_1 , d_2 and d be positive numbers, and we have $T_{d_1} \circ T_{d_2} = T_{d_1 d_2}$, $T_1 = I$, $(T_d)^{-1} = T_{1/d}$.

Proof. Suppose that

$$b_i = \frac{1}{d_2^i} \sum_{j=1}^i \binom{i}{j} (d_2 - 1)^{i-j} a_j$$
 and $c_k = \frac{1}{d_1^k} \sum_{i=1}^k \binom{k}{i} (d_1 - 1)^{k-i} b_i$.

Then, a slight calculation leads to

$$c_k = \frac{1}{(d_1 d_2)^k} \sum_{j=1}^k \binom{k}{j} (d_1 d_2 - 1)^{k-j} a_j.$$

which proves $T_{d_1} \circ T_{d_2} = T_{d_1 d_2}$. The remaining two are obvious.

This lemma shows that each T_d is a non-singular transformation and further the family $\{T_a\}_{a>0}$ is a representation on L of a Lie group (R^+,x) . Exchange the parameter d for t subject to $d=e^t$ and calculate $d/dt(T_a[a])|_{t=0}$ formally. Then, we have the formal generating operator of T_d as follows;

$$(2) -a_1 \frac{\partial}{\partial a_1} + (2a_1 - 2a_2) \frac{\partial}{\partial a_2} + \cdots + (na_{n-1} - na_n) \frac{\partial}{\partial a_n} + \cdots$$

For the time being, discussion is made on an m-dimensional linear space \bar{L} which is of the first m terms $\bar{a} = \{a_1, \dots, a_m\}$ of every element of L. It is easy to see from the definition (1) that the action of T_a can be restricted on \bar{L} , whose restriction we denote by \bar{T}_a . Then, \bar{T}_a gives an R^+ -action on \bar{L} and its generator is expressed as a sum of first m components of (2). Since \bar{T}_a is a linear transformation, it is expressed as an m-th order matrix, which is obtained by means of the generator as follows:

(3.a)
$$\exp\left\{t\begin{bmatrix} -1 & & & \\ 2 & -2 & & \\ & \cdot & \cdot & \\ & m & -m \end{bmatrix}\right\} = P\begin{bmatrix} 1/d & & & \\ & 1/d^2 & & \\ & & \cdot & \\ & & 1/d^m \end{bmatrix}P^{-1},$$

where

(3.b)
$$P = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} & & \\ \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \\ \vdots & \vdots & \ddots \\ \begin{pmatrix} m \\ 1 \end{pmatrix} & \begin{pmatrix} m \\ 2 \end{pmatrix} & \ddots & \begin{pmatrix} m \\ m \end{pmatrix} \end{bmatrix}.$$

Here, m is chosen arbitrarily, and any (i, j) component of both (3.a) and (3.b) turns out to depend on i and j only. By letting $m \rightarrow \infty$, each column vector of P, which is an eigenvector of (3.a), makes us pay attention to the following sequence of numbers;

(4)
$$a^{(s)} = \{ \underbrace{0, \dots, 0}_{s}, \binom{s}{s}, \binom{s+1}{s}, \dots \}$$
 $(s=1, 2, \dots).$

Theorem 2. With respect to $a^{(s)}$, it holds that $T_a[a^{(s)}] = (1/d^s)a^{(s)}(s=1, 2, \cdots)$.

Since slight calculation verifies the equality, we omit the proof. It is to be noted that each $a^{(s)}$ is independent of the value of d. Next, we show that $\{a^{(s)}\}$ thus obtained forms a basis of L.

Lemma 3. Let θ_s be arbitrary real numbers, and $\sum_{s=1}^{\infty} \theta_s a^{(s)}$ belongs to L. On the contrary, any element $\xi = \{\xi_1, \xi_2, \cdots\}$ is expressed as $\xi = \sum_{s=1}^{\infty} \theta_s a^{(s)}$, and the expansion coefficient θ_s is given by

(5)
$$\theta_s = \sum_{i=1}^s (-1)^{s-i} \binom{s}{i} \xi_i.$$

Proof. The former assertion is obvious, for due to (4) each term of $\sum_{s=1}^{\infty} \theta_s a^{(s)}$ is a finite sum of real numbers. Concerning the latter one, substitute (5) into $\sum_{s=1}^{\infty} \theta_s a^{(s)}$, and we can see that its k-th term is given by

$$\sum_{s=1}^{k} \sum_{i=1}^{s} (-1)^{s-i} \binom{s}{i} \xi_{i} \binom{k}{s} = \sum_{i=1}^{k} \xi_{i} \sum_{s=i}^{k} (-1)^{s-i} \binom{s}{i} \binom{k}{s} = \sum_{i=1}^{k} \xi_{i} \binom{k}{i} \delta_{ki} = \xi_{k}.$$

Now, we are in a position to derive the spectral resolution of T_a . As is shown in the above lemma, the linear space L is a direct sum of all eigenspaces of T_a . Each eigenspace does not depend on the value of d. The projector P_s from L onto a one-dimensional subspace generated by $\{a^{(s)}\}$ is immediately obtained from (5), and we have the final result.

Theorem 4. The summation T_d is expressed as $T_d = \sum_{s=1}^{\infty} (1/d^s) P_s$, where P_s is a projector given by

$$(P_s[\xi])_i = egin{cases} \sum\limits_{j=1}^s {(-1)^{s-j} {s \choose j} \xi_j {i \choose s}} & (i \ge s), \ 0 & (i < s). \end{cases}$$

With respect to P_s , it holds that $P_sP_t = \delta_{st}P_s$ and $\sum_{s=1}^{\infty} P_s = I$.

3. Remarks. By means of the spectral resolution of T_a , we can define a linear operator $\varphi(T_a)$ by not necessarily using the Dunford integral formalism. Here, φ is an analytic function whose pole is not equal to $1/d^s$ ($s \ge 1$). If no zero point of φ is equal to $1/d^s$, too, the inverse of $\varphi(T_a)$ is immediately obtained, so that we can obtain the solution of the recurrence of the form $\varphi(T_a)[\xi]=u$, where ξ is unknown and u is given. This type of recurrence is treated, for example, in [2]. Also, it can be verified that T_a is a regular transformation when $d \ge 1$, while each projector P_s is neither regular nor normal.

References

- [1] N. Yanagihara: Theory of Series. Asakura (1962) (in Japanese).
- [2] W. Szpankowski: Solution of a linear recurrence equation arising in the analysis of some algorithms. SIAM J. Alg. Disc. Meth., 8, 233-250 (1987).