101. A Construction of Negatively Curved Manifolds

By Koji FUJIWARA

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 14, 1988)

§ 1. Introduction. Let V be a complete Riemannian manifold with -b < K < -a < 0 and $vol(V) < \infty$. Then it is known that each end of V is an infranilmanifold ([1], [2]).

But if we change the condition -b < K < -a < 0 to -b < K < 0, then the conclusion does not hold in general. In this paper we will give a counter-example; if the dimension is bigger than three, there is a complete manifold V with -b < K < 0 and vol $(V) < \infty$ such that the end is not an infranilmanifold, and in the case that the dimension is three, the end is a torus.

The author would like to thank Prof. Ochiai for his advice and constant encouragement and Dr. Fukaya who suggested this problem.

§ 2. Theorem and its proof. Theorem. Let V be a closed manifold with $K \equiv -1$ and W a closed totally geodesic submanifold of codimension 2 in V.

Then $V \setminus W$ admits a complete metric with -a < K < 0 and $\operatorname{vol}(V \setminus W) < \infty$, where a > 0.

Remark 1. A pair (V, W) with the above property exists.

Remark 2. In this theorem, the end of $V \setminus W$ is a S^1 -bundle over a hyperbolic manifold W, which is not an infranilmanifold.

Proof. Let $\sigma = \inf(W; V)$, and take a σ -neighborhood U of W in V. We introduce a polar coordinate (w, θ, r) on U. Then $U = W \times S^1 \times (0, \sigma)$ and we can write the hyperbolic metric g_V of V as follows on U ([4], [3]),

(1)
$$g_v = \cosh^2(r)g_w + \sinh^2(r)d\theta^2 + dr^2$$
 $(0 \le \theta \le 2\pi, 0 \le r \le \sigma)$ where g_w denotes the induced metric on W .

We are going to change the metric g_v to a new metric $h_{v'}$ on $V'=V\setminus W$ as follows. Using a positive function f(r), we set

$$(2) h_{v'} = \cosh^2(r)g_w + \sinh^2(r)d\theta^2 + f^2(r)dr^2 (0 \le \theta \le 2\pi, 0 \le r \le \sigma).$$

To choose a suitable function f(r), we compute the sectional curvature K_h of the metric $h_{v'}$. First, note that a vector field ξ on W naturally extends to a vector field on U, and we also denote it by ξ . The Riemannian connection V of $h_{v'} = \langle , \rangle$ is given as follows, where D denotes the Riemannian connection on W, and ξ, ζ, \cdots denote vector fields on W or their extentions to U.

$$\begin{bmatrix} \boldsymbol{V}_{\boldsymbol{\xi}} \boldsymbol{\zeta} \! = \! \boldsymbol{D}_{\boldsymbol{\xi}} \boldsymbol{\zeta} \! - \! \tanh \left(\boldsymbol{r} \right) \! \left\langle \boldsymbol{\xi}, \boldsymbol{\zeta} \right\rangle \! \frac{\partial}{\partial \boldsymbol{r}} \\ \boldsymbol{V}_{\boldsymbol{\xi}} \! \frac{\partial}{\partial \boldsymbol{\theta}} \! = \! \boldsymbol{V}_{\boldsymbol{\theta}/\boldsymbol{\theta}} \boldsymbol{\xi} \! = \! \boldsymbol{0} \end{bmatrix}$$

(3)
$$\begin{cases} V_{\xi} \frac{\partial}{\partial r} = V_{\partial/\partial r} \xi = \tanh(r) \xi \\ V_{\partial/\partial \theta} \frac{\partial}{\partial r} = V_{\partial/\partial r} \frac{\partial}{\partial \theta} = \coth(r) \frac{\partial}{\partial \theta} \\ V_{\partial/\partial \theta} \frac{\partial}{\partial \theta} = -\sinh(r) \cosh(r) \frac{\partial}{\partial r} \\ V_{\partial/\partial r} \frac{\partial}{\partial r} = \frac{f'(r)}{f(r)} \frac{\partial}{\partial r} \end{cases}$$

Thus, the curvature tensor R of $h_{v'}$ is given as follows,

$$(4) \begin{cases} R\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}\right) \frac{\partial}{\partial r} = \left(1 - \frac{f'(r)}{f(r)} \coth(r)\right) \frac{\partial}{\partial \theta} \\ R\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}\right) \frac{\partial}{\partial \theta} = -\sinh(r) \left(\sinh(r) + \cosh(r) \frac{f'(r)}{f(r)}\right) \frac{\partial}{\partial r} \\ R\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}\right) \xi = 0 \\ R\left(\frac{\partial}{\partial r}, \xi\right) \frac{\partial}{\partial r} = \left(1 - \frac{f'(r)}{f(r)} \tanh(r)\right) \xi \\ R\left(\frac{\partial}{\partial r}, \xi\right) \zeta = -\left(1 + \frac{f'(r)}{f(r)} \tanh(r)\right) \langle \xi, \zeta \rangle \frac{\partial}{\partial r} \\ R\left(\frac{\partial}{\partial \theta}, \xi\right) \frac{\partial}{\partial \theta} = 0 \\ R\left(\frac{\partial}{\partial \theta}, \xi\right) \frac{\partial}{\partial \theta} = \sinh^2(r) \xi \\ R\left(\frac{\partial}{\partial \theta}, \xi\right) \zeta = -\langle \xi, \zeta \rangle \frac{\partial}{\partial \theta} \\ R(\xi_1, \xi_2) \zeta = \langle \xi_1, \zeta \rangle \xi_2 - \langle \xi_2, \zeta \rangle \xi_1 \\ R(\xi_1, \xi_2) \frac{\partial}{\partial \theta} = 0 \\ R(\xi_1, \xi_2) \frac{\partial}{\partial \theta} = 0. \end{cases}$$

Then it follows that for the curvature K of $h_{v'}$,

(5)
$$\begin{cases} K(\xi_1 \wedge \xi_2) = -1 \\ K\left(\xi \wedge \frac{\partial}{\partial \theta}\right) = -1 \\ K\left(\xi \wedge \frac{\partial}{\partial r}\right) = \frac{-1 + \frac{f'(r)}{f(r)} \tanh(r)}{f^2} \\ K\left(\frac{\partial}{\partial \theta} \wedge \frac{\partial}{\partial r}\right) = \frac{-1 + \frac{f'(r)}{f(r)} \coth(r)}{f^2}. \end{cases}$$

Furthermore, by a easy computation, the curvature at every 2-plane is a

convex combination of the above numbers -1,

$$\frac{-1+\frac{f'(r)}{f(r)}\tanh{(r)}}{\frac{f^2}{f^2}}, \quad \text{and} \quad \frac{-1+\frac{f'(r)}{f(r)}\coth{(r)}}{\frac{f^2}{f^2}}.$$

Here we need a following lemma.

Lemma. There is a function

$$f:(0,\sigma)\longrightarrow R_+$$

such that

(6.1)
$$f(r) = 1 \qquad \left(\frac{\sigma}{2} \le r \le \sigma\right)$$

$$(6.2)$$
 $f'(r) < 0$

(6.3)
$$\int_{0}^{\sigma} f(r)dr = \infty$$

(6.4)
$$\int_0^\sigma f(r) \sinh(r) dr < \infty$$

(6.5)
$$\left| \frac{f'(r)}{f^{s}(r)} \coth(r) \right| \quad is \ bounded, \ (0 < r \le \sigma)$$

(6.5)
$$\left| \frac{f'(r)}{f^{3}(r)} \coth(r) \right| \quad is \ bounded, \ (0 < r \le \sigma)$$
(6.6)
$$\left| \frac{f'(r)}{f^{3}(r)} \tanh(r) \right| \quad is \ bounded, \ (0 < r \le \sigma).$$

Proof of lemma. At first, (6.6) follows from (6.5). Define a function ϕ as follows,

$$\phi(r) = \frac{1}{\sqrt{r} \sinh(r)} \qquad (0 < r \le \sigma).$$

Then we have

(7.1)
$$\int_{0}^{\sigma} \phi(r) dr = \infty$$

(7.2)
$$\int_0^\sigma \phi(r) \sinh(r) dr < \infty$$

(7.2)
$$\int_{0}^{\sigma} \phi(r) \sinh(r) dr < \infty$$
(7.3)
$$\left| \frac{\phi'(r)}{\phi^{3}(r)} \coth(r) \right| \quad \text{is bounded, } (0 < r \le \sigma).$$

Here we may assume $\phi(\sigma/4)>1$, taking σ small. Then it is easy to choose a function f(r) (0 $< r \le \sigma$) such that

(8.1)
$$f(r) = 1 \qquad \left(\frac{\sigma}{2} \le r \le \sigma\right)$$

(8.2)
$$f(r) = \phi(r) \qquad \left(0 < r < \frac{\sigma}{4}\right)$$

$$(8.3) f'(r) \leq 0.$$

From (7.1)–(7.3) and (8.1)–(8.3), it follows that f(r) is a required function. Hence lemma is shown.

Using f(r) in lemma, we define a new metric $h_{U'}$ on $U' = U \setminus W$ as follows, $h_{U'} = \cosh^2(r)g_W + \sinh^2(r)d\theta^2 + f^2(r)dr^2$.

By (6.1), we can extend $h_{V'}$ to a metric $h_{V'}$ on V' by letting $h_{V'} = g_V$ on $V \setminus U$. Then (6.2), (6.5), (6.6), and (5) imply that the curvature K_h of $h_{V'}$ satisfies $-a < K_h < 0$ for some a > 0. Further, the completeness of h_{v} follows from (6.3), and (6.4) implies $\operatorname{vol}_{h}(V') < \infty$. Hence $h_{V'}$ is a required metric on V', and theorem is proved.

References

- [1] P. Buser and H. Karcher: Gromov's almost flat manifolds. Astérisque, 81, Paris (1981).
- [2] P. Eberlein: Lattices in spaces of nonpositive curvature. Ann. of Math., 111, 435-476 (1980).
- [3] M. Gromov and W. Thurston: Pinching constants for hyperbolic manifolds. Inv. Math., 89, 1-12 (1987).
- [4] M. Kanai: New examples of negatively curved manifolds due to Gromov-Thurston. Reports on Gloval Analysis, 9, Univ. of Tokyo (1986).