95. A Note on Isocompact wM Spaces and Mappings

By G. R. Hiremath

Department of Mathematics, Talladega College
(Communicated by Shokichi Iyanaga, M. J. A., Nov. 14, 1988)

Introduction. T_2 isocompact wM spaces behave well like T_2 paracompact M spaces. For example, if $f: X \rightarrow Y$ is a closed, continuous map of a T_2 isocompact wM space X onto Y, then $Y = \bigcup_{n \geq 0} Y_n$, where, for each $n \geq 1$, Y_n is discrete in Y and $f^{-1}(y)$ is compact for each $y \in Y$. As such, we investigate some interesting properties of such spaces and their images under nice maps. Refer [5], [1], [4], [2] and [3] respectively, for the notions of q, point countable and countable type, wM, isocompactness, and quasi-G_δ diagonal.

Main section. Theorem 1. (i) A T_1 space X of point countable type is a q space. (ii) A regular isocompact q space X is point countable type.

Proof of (i). Let $x \in X$ and K be a compact subset of X of countable character with $x \in K$. Let $\{U_n : n \geq 1\}$ be a decreasing local base at K. To claim that $\{U_n\}$ is a q sequence at x, let $x \in U_n$ for each n. Suppose $D = \{x_n : n \geq 1\}$ does not cluster. Then, $D = \{x_n : n \geq 1\}$ is closed. Assume $KD = \emptyset$. Then, $X - D$ is an open nhd of K. Since, $U_n \not\subset X - D$ for each n, we have a contradiction.

Proof of (ii). Let $x \in X$ and $\{U_n\}_n$ be a q sequence at x with $U_{n+1} \subset U_n$ for each n. Let $C(x) = \bigcap_n U_n$. It follows that $C(x)$ is of countable character and $x \in C(x)$. Therefore X is of point countable type. Q.E.D.

Theorem 2. If a regular space X with quasi-G_δ diagonal is a q space or a space of point countable type, then the space is first countable.

Proof. By the Theorem 1 (i), X is a q space in either case. Let $\{U_n\}_n$ be a quasi-G_δ diagonal sequence. Let $x \in X$, $\{G_n\}_n$ be a q sequence at x and $\{n_k\}_k$ be the strictly increasing sequence of natural numbers with $x \in St(x, U_n) = \bigcup \{U \in U_n | x \in U\}$, iff $n = n_k$ for some $k \leq n$. By induction, we can obtain a sequence $\{H_m\}_m$ of open sets with $x \in H_{m+1} \subset H_m \cap G_{m+1} \cap U_{n_{m+1}}$ for each m, where $x \in U_{n_{m+1}}$ in U_{n_m}. It follows that $\{H_m : m \geq 1\}$ is a local base at x. Q.E.D.

Corollary 2.1. If a T_2 wM space with quasi-G_δ diagonal is a quotient image of a locally compact, separable and metrizable space, then the space is locally compact, separable and metrizable.

Proof. Apply the Theorem 2 and a result of A. H. Stone [7]. Q.E.D.

Theorem 3. A T_2 isocompact wM space X is countable type.

Proof. Let $\{U_n\}_n$ be a decreasing wM sequence and $K \subset X$ be compact. Let W_1 be a finite subcollection of U_1 with $K \subset W_1 = \bigcup W_1$. Let W_2 be an open collection with $K \subset \bigcup W_2$ such that $\overline{W}_2 = \{\overline{W} \mid W \in W_2\}$ refines $W_1 \wedge U_2$. Q.E.D.
Let \mathcal{W}_2 be a finite subcollection of \mathcal{W}_1 with $K \subseteq \mathcal{W}_2 = \bigcup \mathcal{W}_2$. Continuing this way, we can obtain a sequence $\{\mathcal{W}_n\}_n$ of finite open collections with $K \subseteq \mathcal{W}_n = \bigcup \mathcal{W}_n$ and \mathcal{W}_{n+1} refines $\mathcal{W}_n \bigcap \mathcal{U}_{n+1}$ for each n. Let $D = \cap_n \mathcal{W}_n$. Then $K \subseteq D$ and D is a compact set of countable character.

Q.E.D.

Corollary 1. A T_3 isocompact wM space is a k space.

By a result of J. E. Vaughan [8], a Tychonoff isocompact wM space is a generalized G_δ set in its compactification and equivalently, its complement in its compactification is Lindelöf.

By a result of H. H. Wicke [9], a T_3 space is point countable type, if it is an open, continuous image of a T_3 isocompact wM space; a T_1 regular isocompact space is a q space, if it is an open, continuous image of a T_2 isocompact wM space (in fact, a T_3 paracompact p space).

Theorem 4. A quotient image of a regular isocompact q space is a k space.

Proof. Let $f: X \to Y$ be a quotient map of a regular isocompact q space X onto Y. Let $F \subseteq Y$ be such that $F \cap C$ is closed in C for every compact $C \subseteq Y$. To claim that F is closed in Y, we prove that $f^{-1}(F)$ is closed in X.

Suppose $x \in f^{-1}(F)$. For any open nhd W of y, $f^{-1}(W) \cap C(x) \cap f^{-1}(F) \neq \emptyset$. Therefore $y \in f(C(x)) \cap F$. Since $x \in f^{-1}(F)$, we have $x \in C(x) \cap (X - f^{-1}(F))$, which implies $y \in f(C(x)) \cap (Y - F)$. Therefore $f(C(x)) \cap F$ is not closed in $f(C(x))$, which is a contradiction to the definition of F.

(II) Suppose $x \in C(x) \cap f^{-1}(F)$. There is an open nhd U of x with $U \cap C(x) \cap f^{-1}(F) = \emptyset$. Let $V_n = U \cap C(x)$ for each n, and $x_n \in V_n \cap f^{-1}(F)$ for each n. Let x_0 be a cluster point of the sequence $\{x_n\}_n$. Then $x_0 \in C(x) \cap U$. Let $K = \{x_n | n \geq 1\}$. Then K is compact, and $x_0 \in \overline{K} \cap f^{-1}(F)$. Let $y_0 = f(x_0)$. Now $x_0 \in K$, $x_0 \in C(x) \cap U$ and $U \cap C(x) \cap f^{-1}(F) = \emptyset$ imply that $x_0 \in K \cap (X - f^{-1}(F))$. Therefore $y_0 \in f(K) \cap (Y - F)$. If W is an open nhd of y_0, then $f^{-1}(W) \cap K \cap f^{-1}(F) \neq \emptyset$, which implies that $W \cap f(K) \cap F = \emptyset$. Therefore $y_0 \in f(K) \cap F$, which implies that $f(K) \cap F$ is not closed in $f(K)$, which contradicts the definition of F. Therefore $f^{-1}(F) = \overline{f^{-1}(F)}$. Q.E.D.

Corollary 4.1. A regular isocompact q space is a k space.

By a result of J. Nagata [6], we have the following corollaries.

Corollary 4.2. A T_3 space is a k space, if f is a quotient image of a T_3 isocompact wM space.

Corollary 4.3. A T_1 regular isocompact q space is a quotient image of a T_3 paracompact M space.

Theorem 5. Let $f: X \to Y$ be a closed, continuous map of a T_3 isocompact wM space X onto Y. Then the following are equivalent.

(i) Y is a regular q space.

(ii) Y is a regular space of point countable type.
(iii) The boundary $\partial f^{-1}(y)$ of $f^{-1}(y)$ is compact for each $y \in Y$.

(iv) Y is a T_ω isocompact ωM space.

Proof. By the Theorems 1 and 3, we have (iv)\Rightarrow(ii)\Rightarrow(i). E. Michael has shown that (i)\Rightarrow(iii), [5]. We need to show, now, that (iii)\Rightarrow(iv): For each $y \in Y$, let

$$L(y) = \begin{cases} \partial f^{-1}(y) & \text{if } \partial f^{-1}(y) \neq \emptyset; \\ f^{-1}(y) \setminus \{p_y\}, & \text{where, } p_y \in f^{-1}(y), \text{ if } \partial f^{-1}(y) = \emptyset. \end{cases}$$

Let $X_0 = X - L$, where $L = \bigcup \{L(y)\mid y \in Y\}$. Then X_0 is closed in X, and X_0 is a T_ω isocompact ωM space. Let $h: X_0 \to X$ be defined by $h(x) = x$ for each $x \in X_0$. Then $g = f \circ h$ is a perfect map of X_0 onto Y. Therefore Y is a T_ω isocompact (see [2]) and ωM (see [4]) space. [Note that a space being a T_ω isocompact ωM space is a perfect property.]

Q.E.D.

References