
No. 9] Proc. Japan Acad., 64, Ser. A (1988) 315

Decreasing Streamlines of Solutions and Spectral
Properties of Linearized Operators for

Semilinear Elliptic Equations

By Takashi SUZUK
Department of Mathematics, Faculty of Science,

Tokyo Metropolitan University

(Communicated by K.Ssaku YOSIDA, M. $. A., Nov. 14, 1988)

1. Introduction. Let 9cR be a bounded domain with a smooth
boundary 3/2 and f" R--R be a C function. We consider the semilinear
elliptic equation
(1) -Au= f(u), uO (in 9), u=O (on 39).
Then the linearized operator around the solution u--u(x)e C(9) C()is
given by A-A(u)=-A-f’(u) in L(9) with D(A)=HH(2). In the pre-
vious work [1], we have given some streamlines in/2 along which the solu-
tion decreases, when/2 is a symmetric domain in R. There, we restricted
ourselves to the mild solution, that is, the case when the second eigenvalue
/.=/2(u) of A=A(u) is positive. In this article, we shall note that con-
versely, the decreasi’ng streamlines of the solution contain some informa-
tion about the eigenvalues of A(u).

Thus, we suppose that the domain is the unit ball" 9={Ixll}cR
Then from [5], every solution u--u(x) of (1) is radial" u=u(Ixl)and UrO
for 0r--Ix[l. Therefore, the set of eigenvalues a(u) of A(u) is divided
as a(u)= [2=0a(u) according to the principle of separation of variables.
Namely, let (p}=0 (O--popp2.. ") be the eigenvalues of --/, where
denotes the Laplace-Beltrami operator on S-={]xl=l}. In fact we have
p=m(2,+m), where 2,=N-2. Further, multiplicity of p (and hence
that of g e a(u)) is as follows" for N=2 we have =1 (m=0)and =2
(m_ 1);for N2we have --(2m+N-2) (re+N--3)!/(N--2)!m! (see, e.g.
[9]). Then a(u) denotes the set of eigenvalues of the ordinary differential
operator A(u) (d / dr) ((N- 1) r)(d dr) c(r) -- (p r) with (d dr).

Ir=l=0, where c(r)=f’(u).
Now, for these sets a(u) (m-- 0, 1, 2, .), we claim the following, where

R+=(O, oo).
Theorem. If f(R+)CR+, then a(u)(-oo, O]= for ml. In par-

ticular, dim Ker A(u) is at most 1 for any solution u on the ball [2={Ix11)
cR, provided that f(R+) cR+.

2. Proof of Theorem. Set am(u)={/]]=O, 1, 2, .} with oo

//?.... Since p,p if m’m, we have//.., and hence we
have only to prove that p0.

The eigent?unction ot A(u) corresponding to /0 is of the orm ,(x)=
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(r)Z(w) (x=rw), where =(r) denotes the eigenfunction of A(u) and
Z() denotes the second eigenfunction of -/. Thus Z--Z(w) has exactly two
nodal domains S+/- on S-={[x[=l} and S are chemi-spheres. Therefore,
Z0 follows from the existence of a w e C(9+) C(9+) satisfying
(2) (--f’(u))wO, wO (in 9+) and w=O (on
by Jacobi’s method ([2]), where 9+ {x e 9] x0} denotes a chemi-ball. We
shall give such a w for the cases of N=2 and N=3, for simplicity.

The case N=2. Let ]" CR be the canonical mapping. Through
some calculations we can derive from -u=f(u) that
( 3 ) w 2(Re )f(u)+f’(u)w (in ),
where w=gu. [,] for each holomorphic function =(z) (z=x+ix). Taking
(z)=i(l+z), we have Re=--2x20 in +={xll, x0}, so that (---
f’(u))wO in 9+ by f(u)O. Further, each flow starting from
{x2=0} subject to the vector field ,=,(z) goes outside from the level set
{[ x]= c} (0c 1) in 9 +. Hence w0 in 9 +, because u= u(] x ) with u0
(0rl). Finally is orthogonal to {x2=0} and goes along 39 if it starts
from the end points of 9+ {x2=0}. Hence wo,=0.

The case N=3. If 9={]x[l}cR and u=u(r) (r=]x]), the relation
2u f(u) gives

(3’) --w=2(w.,)f(u)--u,(--2.y-1 N--!)(.)+f’(u)w (in 9),
r r r

where w=gu. for each vector field e C (9R;).
For 9+ ={(x,y,z)eRlx+y+zl, y0}, we take =(p, y) with

J+z, o which each section cut by a plane T containing the y-axis is
similar to [,]. Obviously -0 and hence w0 in 9+. Further, w=0
on 9 is verified in a similar way. We shall show that .,0 and

A_2N--I O (.)>0 inD

hen the desired relation (2) will follow from f()>0 and <0.
By he definition, the vector field lies in each lane T containing he

g-axis. Wihou loss of generality, suose tha T contains he z-axis, too.
hen on his lane T, is nohing bu [u], where ()=i(1+ with

Therefore, we have if y>0 that .r=Re<0 and

r r r r

( 2 3 1)(w ).(l_2O)(w ,)=1 .- Sr>0.2-&e rr r r. An example. We consider the nonlinear eigenvalue problem

( 4 ) -u=e (in 9), u=0 (on
in 9= {]xl<l}R, where is a positive parameter. Its bifurcation diagram
has been completely known ([4], [6]). In particular, when 2N10, the

solution ranch 3 in -u plane starting rom (, u)=(O, 0) bends infinitely

many times around the line =2{(N-2)}-. With each point g=(2, u)e
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the linearized operator A(g)=--e is associated. In the same way, the
set of eigenvalues o A(g) is divided as a(g)= U =o aM(g). From Theorem,
we have a(g) (-- oo, 0] or m>= 1..Hence, at each bending point y in
3, the eigenvalue 0 of A() is simple so that the local analysis of [3] works.

Thus, around y=(], ), the branch is parametrized as g(t)=((t), u(t))
(Itl" small) with ((0), u(0))=(],), (0)=0 and (0)=, where 0 is an
eigenunction of A(y) corresponding to the simple eigenvalue 0. Therefore,
we have a smooth relation in t (see [7], e.g.)" A(g(t))9(t)=l(t)9(t) or
small, with/(0)--0 and 9(0)=. From this relation, we can deduce
5 ) (0) 1-(0) (e,

where I]’11 and (,)are the norm and inner product in L(/2), respectively.
Here,

so that (0) 4= 0 by (0) =/= 0.
In this way, we have gotten the conclusion. Along the branch

through each bending point the number = #{0(g) (--oo, 0]} increases one
by one and hence from 0 to infinite. This fact has been known up, to the
second bending ([8]).
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