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1. Introduction. Let a=(x) be an infinite sequence in the unit
interval E=[0, 1]. The sequence a is called uniformly distributed in E if
lim_A(a;x)=x for all x e E, where A(a;x)/N denotes the number of
terms Xn, O.n<_N--1, which are less than x. The diaphony F(a) and the
L discrepancy T(a) o the seluence a are defined for every positive integer
N as follows"

F(a)=(2 =1 (1/h2) I(1/N)S(a; h)[2)
and

where

T(a)-- A(a x)/N-- x 12 dx

S(a h)= -=0 exp (2zihx)
is the exponential sum of a. It is well known (see [9] and [10]), that both
T(a)O and F(a)--.O are equivalent to the sequence a being uniformly
distributed in E. Also it is known (see [5] and [6]), that the best possible
order o magnitude o both T(a) and F(a) is N-l(log N)1/2.

Now let (rj)? be a given infinite secluence o integers rj>=2. Suppose
also that for every integer ]>=0 we are given a permutation r of the set
{0, 1, ..., r+--l}. For the sake o brevity, we put R0=0 and R=rr...r
or ]>=1. The van der Corput generalized sequence a=((n)), associated
with the given sequences (r) and (r)g, was constructed by Faure [2] as
2ollows" For an integer n0, let

n==o ajR (a e {0, 1, ...,r+l--1}, ]=0, 1, ...)
be the (r)-adic expansion of n. Then set

(n)==0 r(a) R .
In the present paper, we prove that i the sequence (r) satisfies the

O(n), then both the diaphony F(a) of the van der Corputcondition

__
r=

generalized sequence a and the L discrepancy T() o any symmetric
sequence produced by have the best possible order o magnitude
N-(l.og N)/. Also we obtain an exact estimate or the L discrepancy o
a class of two-dimensional finite sequences associated with the van der
Corput generalized sequences.

2. Statement of the results.
Theorem 1. Suppose that (r) satisfies the condition

Bn for all n N,(1) =r__
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where B is a positive constant. Then, for every integer N>=I, the diaphony
of the van der Corput generalized sequence a satisfies
( 2 NF(a) guC(r, B) (log rN)/,
where r=min {r I] e N} and C(r, B)=((B--1)/(3 log r))/.

In order to formulate the next two theorems we neel the notion of
symmetric sequence (see [5]). A sequence (y) in E is called symmetric if
y.+y/=l for every n>__0. A symmetric sequence (y) is said to be
produced by an infinite sequence (x) i for every integer n>__0 we have
either Yn--Xn or Yn+ --Xn. Obviously, every infinite sequence in E produces
at least one symmetric sequence.

Theorem 2. Suppose that (r) satisfies (1). Let be any symmetric
sequence produced by the van der Corput generalized sequence a. Then
for every integer NI, we have
( 3 ) NT(d)C(r, B) (log (rN/2))/+ 1,
where r and C(r, B) are defined as in the previous theorem.

Now let X be a finite sequence consisting of N points in the unit square
E. Then the L discrepancy T(X) of X is defined by

T(X)=( IA(x, y) N-xy,dxdy)/,
where A(x, y) denotes the number of points of X lying in the rectangle [0, x)

[0, y). From the well known theorems of Roth [8] and Devenport [1], it
follows that the best possible order of magnitude of T(X) is also N-(log N)/.
In the next theorem, we construct a very large family of finite sequences
in E whose L discrepancy has the best possible order of magnitude.

Theorem 3. Suppose again that (r) satisfies (1). Let =(y) be
any symmetric sequence in E produced by the van der Corput generalized
sequence a, and let N>=I be a given integer. Then for the L discrepancy
T(X) of the two-dimensional finite sequence X consisting of the points

(n/N, Yn), n--O, 1, ..., N--l,
we have
( 4 ) NT(X)<=C(r, B) (log (rN/2))/+2,
where r and C(r, B) are the same as in Theorem 1.

Let =(y) be a symmetric sequence in E produced by the van der
Corput generalized sequence a, and let N>_2 be an integer. From [7"
Theorem A], it follows that NT()<_(1/)nF(a)+ 1, where n=[N/2]. (Here
[x] denotes the integral part of a real x.) From this and Theorem 1 we
immediately obtain Theorem 2. Further, from one-dimensional case of
[6" Theorem 1], it follows that there exists an integer n with l<=n<__N such
that NT(X)<=nT()+I. From this and Theorem 2 we get Theorem 3.
Hence, we have to prove only Theorem 1. A sketch of its proof is given
in Sections 3 and 4.

Remark 1. If (r) satisfies a stronger condition than (1), then the
estimates (2), (3) and (4) admit a minor improvement. For example, if
r__<B for ]>= 1, then log rN in (2) can be replaced by log ((r--1)N+ 1).
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Remark 2. We note that in the special case rl--r2 r and r0=rl
I, where r>__2 is an integer and I is the identical permutation of the

set {0, 1, ..., r-1}, the above results are due to Proinov and Grozdanov [7].
Remark 3. In connection with Theorem 2 we shall formulate a result

of Faure [3]. Consider the symmetric sequence
a=((o), -(o), (), -(),...)

and put
c=lim NT(a)/(log N)1/2.

In the special case r=r2 2 and r0=vl I, Faure proved that
0.29... gc<0.34, and conjectured that c=0.29.

3. Auxiliary results. In this section we do not suppose that (r)
satisfies (1). Let a be the van der Corput generalized sequence.

Lemma 1. The sequence a has the following two properties"
( For every integer n>=O there exists a real number fin such that

{9(])l]=0, 1,...,R,.--1}={j/R,+flni]=O, 1,...,Rn--l}.
For all integers a, b and n with O<=a<rn+l, O<=bR, and n.>__O,(ii)

we have

(6)
where

9(aR, + b)=(aRn)+9(b)- (0).
We omit the proof of Lemma 1 since it can easily be verified directly

by the definition of (n). We see moreover tha-t (i) holds or
n=:(0) R+,..

Lemma 2. Let N=aRn+b, where a, b and n are integers with l<=a
<r,+l, l<b<=R, and n>O. Then the exponential sum Su(a; h) of a satisfies

IS( h)[lS=( h)l/lS( h)l for all h e Z.
Proof. Let h e Z. Using Lemma 1-(ii) we deduce

Su(a h)=San.(a h)+So(a h) exp (2ih((aR,)--(O))),
which implies the desired inequality. Q.E.D.

Lemma 3. Let N>=I be an integer, and let
(5) N=]=0ajR (aj e {0, 1, ...,r+1-1}, ]=0, 1, ...)
be its (r)-adic expansion. Then for the exponential sum Su(a; h) of a, we
have the estimate

IS(a h)l=o aR(h) for all h e Z,

if h--O (mod m),a(h)-
0 if h 0 (mod m).

Proof. Let h e Z. First we state that
( 7 ISa.(a; h)l<=aR,a.(h)
or every integer a with l<=agr,+,. Indeed, from Lemma 2, it follows
that
( 8 ]SaRn((’ h)lga [S,.(a;h)]
or the same values of a. From Lemma 1-(i) and the well known identity
ma(h) :jo exp (2uih]/ m), we get
( 9 ) S,.(a; h)=R,a.(h) exp (2ihfln).
From (8)and (9), we obtain the desired inequality (7). Further, we may
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assume with no loss of generality that an=/==O in (5). Now to complete the
proof of (6) one can use induction on n and the inequality (7). Q.E.D.

Remark 4. LetN> 1 and h 1 be integers. Then Lemma 3 implies that
IS(a; h)l<rh--1, where n satisfies R_<hR. From this and the well
known Weyl criterion for uniform distribution (see [4" p. 7]), we conclude
that every van der Corput generalized sequence is uniformly distributed
in E.

4. Proof of Theorem 1. Let N>__I be a given integer, and let (5) be
its (r)-adic expansion with a=/=0. From the definition of the diaphony
F(a) and Lemma 3, we get

YF(a) <=2 ,--o ,=0 ajaRR =1 (1/h2).$nj(h)$R(h)
=4 ,--o ,=oaaRR ,=1 (1/h)$j(h)

2 =0aR ;= (1 / h2)$j(h)
=(=2/3) =0 (2aR =0 aR--a)
=<(/3) =0 a(2rj/ --a)
=<(/3) =0 (r. +1-1).

From this and (1) we obtain
(10) NF(a) <= (/3)(B- 1)(n+ 1).
On the other hand, it follows from (5) that N>=R>=r, and so n<
(logN)/(log r). Hence, (10) implies the desired estimate (2). Q.E.D.
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