89. A Note on the Arithmetic of an Elliptic Curve over Z_p -extensions

By François RAMAROSON Department of Mathematics, Howard University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1987)

1. Introduction. Let $X_0(19)$ be the modular curve which is a smooth model for the function field Q(j(z), j(19z)). It has genus one and its jacobian, denoted E, is an elliptic curve defined over Q. Let K be an imaginary quadratic field with discriminant less than -4 and p>3, a rational prime, not equal to 19. In this note we are interested in the arithmetic of E over K_{∞} , the anticyclotomic Z_p -extension of K. Let Λ be the Iwasawa ring and $\mathcal{C}(K_{\infty})$ the Heegner module as in [2]. It is a conjecture of Mazur, that $\mathcal{C}(K_{\infty})$ is a Λ -module of rank 1. We have the following:

Theorem 1. Let $\varepsilon(p)$ be 0, 1 or -1 according as p ramifies, splits or stays prime in K. Assume that:

(i) 19 splits in K

(ii) $h(p-\varepsilon(p))$ is not divisible by 3, where h is the class number of K. Then, $\mathcal{E}(K_{\infty})$ is a Λ -module of rank one.

Corollary. Under the conditions of Theorem 1, and if K_n denotes the *n*-th layer of K_{∞} , then:

 $\operatorname{rank} E(K_n) \longrightarrow \infty \quad \text{as} \quad n \longrightarrow \infty.$

We will now outline briefly the main steps in the proofs. The details will appear elsewhere.

2. Notation's (Gross [1], Mazur [2]). Write $(19) = \mathcal{N} \cdot \mathcal{N}^{\epsilon}$ in K and for $n \geq 0$, let \mathcal{O}_n denote the order of conductor p^n . In $\mathcal{O}_{n'}(19) = \mathcal{N}_n \cdot \mathcal{N}_n^{\epsilon}$ where $\mathcal{N}_n = \mathcal{N} \cap \mathcal{O}_n$. Let $(\mathcal{O}_n, \mathcal{N}_n, [\mathcal{O}_n])$ denote a Heegner point of level p^n . If ∞ denotes the cusp at infinity, then the divisor $((\mathcal{O}_n, \mathcal{N}_n, [\mathcal{O}_n])) - (\infty)$ defines a point $x_n \in E(H_n)$, where H_n is the ring class field $K(j(\mathcal{O}_n))$. Let $e_n = N_{H_n/k_n}(x_n)$ and $\mathcal{E}(K_n)$, the submodule of $(E(K_n) \otimes \mathbb{Z}_p)/\text{torsion}$, generated by $\{e_n^{\epsilon} : \sigma \in \text{Gal}(K_n/K)\}$.

3. Using the action of T_p , the *p*-th Hecke operator, one can show the following:

Lemma 1 (Mazur [2]). Let $a_p = 1 + p - \#(E(F_p))$, where F_p is the field with p elements. Suppose that a_p is congruent to neither 0 nor $1 + \varepsilon(p) \mod p$. Then:

$$N_{K_m/K_n}\mathcal{E}(K_m) = \mathcal{E}(K_n); \quad m \ge n \ge 0.$$

Lemma 1 allows us to consider $\mathcal{C}(K_{\infty}) = \lim \mathcal{C}(K_n)$ where the projection maps are the norm maps. $\mathcal{C}(\bar{K}_{\infty})$ is the Heegner module. It is easy to see that $\mathcal{C}(K_{\infty})$ is a cyclic *A*-module. Furthermore, its rank is 0 or 1 (see [2]). In order to prove Theorem 1, it is enough to show that $e_n \neq 0$ for some *n*. In fact, we have:

Theorem 2. Under the conditions of Theorem 1, we have: $e_n \neq 0$ in $\mathcal{E}(K_n)$, for all $n \geq 0$.

The proof of Theorem 2 uses a certain modular unit in the rational function field of $X_0(19)$, Weil's reciprocity law [3] and the criterion of Neron-Ogg-Shafarevitch.

As for the corollary, we can deduce it from Theorem 1, using the following:

Theorem 3. Under the conditions of Theorem 1: rank_{Z_n} $\mathcal{E}(K_n) \longrightarrow \infty$ as $n \longrightarrow \infty$.

References

- B. Gross: Heegner points on X₀(N). In Rankin, R. A. (ed.), Modular Forms. Halsted Press, New York, pp. 87-106 (1984).
- [2] B. Mazur: Modular curves and arithmetic. Proceedings of Intern. Congress of Mathematicians, Warsaw, vol. 1, pp. 186-211 (1983).
- [3] J. Silverman: The arithmetic of elliptic curves. GTM 106, Springer-Verlag (1986).