89. A Note on the Arithmetic of an Elliptic Curve over Z_{p}-extensions

By François Ramaroson
Department of Mathematics, Howard University
(Communicated by Shokichi Iyanaga, m. J. a., Oct. 12, 1987)

1. Introduction. Let $X_{0}(19)$ be the modular curve which is a smooth model for the function field $\boldsymbol{Q}(j(z), j(19 z))$. It has genus one and its jacobian, denoted E, is an elliptic curve defined over \boldsymbol{Q}. Let K be an imaginary quadratic field with discriminant less than -4 and $p>3$, a rational prime, not equal to 19. In this note we are interested in the arithmetic of E over K_{∞}, the anticyclotomic Z_{p}-extension of K. Let Λ be the Iwasawa ring and $\mathcal{E}\left(K_{\infty}\right)$ the Heegner module as in [2]. It is a conjecture of Mazur, that $\mathcal{E}\left(K_{\infty}\right)$ is a Λ-module of rank 1 . We have the following:

Theorem 1. Let $\varepsilon(p)$ be 0,1 or -1 according as p ramifies, splits or stays prime in K. Assume that:
(i) 19 splits in K
(ii) $h(p-\varepsilon(p))$ is not divisible by 3 , where h is the class number of K. Then, $\mathcal{E}\left(K_{\infty}\right)$ is a 1 -module of rank one.

Corollary. Under the conditions of Theorem 1, and if K_{n} denotes the n-th layer of K_{∞}, then:
$\operatorname{rank} E\left(K_{n}\right) \longrightarrow \infty \quad$ as $n \longrightarrow \infty$.
We will now outline briefly the main steps in the proofs. The details will appear elsewhere.
2. Notations (Gross [1], Mazur [2]). Write (19) $=\mathfrak{I l} \cdot \mathfrak{I l}^{\text {r }}$ in K and for $n \geq 0$, let \mathcal{O}_{n} denote the order of conductor p^{n}. In $\mathcal{O}_{n^{\prime}}(19)=\mathscr{N}_{n} \cdot \mathscr{N}_{n}^{\tau}$ where $\Re_{n}=\mathfrak{N} \cap \mathcal{O}_{n}$. Let $\left(\mathcal{O}_{n}, \mathscr{N}_{n},\left[\mathcal{O}_{n}\right]\right)$ denote a Heegner point of level p^{n}. If ∞ denotes the cusp at infinity, then the divisor $\left(\left(\mathcal{O}_{n}, \mathscr{N}_{n},\left[\mathcal{O}_{n}\right]\right)\right)-(\infty)$ defines a point $x_{n} \in E\left(H_{n}\right)$, where H_{n} is the ring class field $K\left(j\left(\mathcal{O}_{n}\right)\right)$. Let $e_{n}=$ $N_{H_{n} / k_{n}}\left(x_{n}\right)$ and $\mathcal{E}\left(K_{n}\right)$, the submodule of $\left(E\left(K_{n}\right) \otimes Z_{p}\right) /$ torsion, generated by $\left\{e_{n}^{\sigma}: \sigma \in \operatorname{Gal}\left(K_{n} / K\right)\right\}$.
3. Using the action of T_{p}, the p-th Hecke operator, one can show the following :

Lemma 1 (Mazur [2]). Let $a_{p}=1+p-\#\left(E\left(F_{p}\right)\right)$, where F_{p} is the field with p elements. Suppose that a_{p} is congruent to neither 0 nor $1+\varepsilon(p) \bmod p$. Then:

$$
N_{K_{m} / K_{n}} \mathcal{E}\left(K_{m}\right)=\mathcal{E}\left(K_{n}\right) ; \quad m \geq n \geq 0
$$

Lemma 1 allows us to consider $\mathcal{E}\left(K_{\infty}\right)=\lim \mathcal{E}\left(K_{n}\right)$ where the projection maps are the norm maps. $\mathcal{E}\left(\bar{K}_{\infty}\right)$ is the Heegner module. It is easy to see that $\mathcal{E}\left(K_{\infty}\right)$ is a cyclic Λ-module. Furthermore, its rank is 0 or 1 (see [2]). In order to prove Theorem 1, it is enough to show that $e_{n} \neq 0$ for some n. In
fact, we have:
Theorem 2. Under the conditions of Theorem 1, we have: $e_{n} \neq 0$ in $\mathcal{E}\left(K_{n}\right)$, for all $n \geq 0$.

The proof of Theorem 2 uses a certain modular unit in the rational function field of $X_{0}(19)$, Weil's reciprocity law [3] and the criterion of Neron-Ogg-Shafarevitch.

As for the corollary, we can deduce it from Theorem 1, using the following:

Theorem 3. Under the conditions of Theorem 1:

$$
\operatorname{rank}_{Z_{p}} \mathcal{E}\left(K_{n}\right) \longrightarrow \infty \quad \text { as } n \longrightarrow \infty
$$

References

[1] B. Gross: Heegner points on $X_{0}(N)$. In Rankin, R. A. (ed.), Modular Forms. Halsted Press, New York, pp. 87-106 (1984).
[2] B. Mazur: Modular curves and arithmetic. Proceedings of Intern. Congress of Mathematicians, Warsaw, vol. 1, pp. 186-211 (1983).
[3] J. Silverman: The arithmetic of elliptic curves. GTM 106, Springer-Verlag (1986).

