75. Euler Factors Attached to Unramified Principal Series Representations

By Takao WATANABE Mathematical Institute, Tohoku University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1987)

1. Introduction. Let G be a connected reductive unramified algebraic group defined over a non-archimedean local field F of characteristic zero. We use the same notation as in [3]. We fix a non-degenerate character φ of U(F). For a regular unramified character $\chi \in X_{\text{reg}}(T)$ of T(F), let $\rho(D_{\chi})$ be the unique constituent of the unramified principal series representation $I(\chi)$ which has a Whittaker model with respect to φ (see [3] Theorem 2). The purpose of this note is to give a construction of an Euler factor attached to $\rho(D_{\chi})$. A detailed account will be given elsewhere.

Since the minimal splitting field E of G is unramified over F, the Galois group Γ of E over F is cyclic. Let σ be a generator of Γ . Let $({}^{L}G^{0}, {}^{L}B^{0}, {}^{L}T^{0})$ be a triple defined over the complex number field C which is dual to the triple (G, B, T). Let ${}^{L}G = {}^{L}G^{0} \rtimes \Gamma$ be the finite Galois form of the L-group of G ([1]) and $X^{*}({}^{L}T^{0})$ the character group of ${}^{L}T^{0}$. For $\gamma \in \Gamma$, $g \in {}^{L}G^{0}$ and $\lambda \in X^{*}({}^{L}T^{0})$, the transform of g (resp. λ) by γ is denoted by ${}^{\tau}g$ (resp. ${}^{\tau}\lambda$). Let $\Re({}^{L}G^{0})$ (resp. $\Re({}^{L}G)$) be the set of equivalence classes of finite dimensional irreducible representations of ${}^{L}G^{0}$ (resp. ${}^{L}G$).

2. The parametrization of $\Re({}^{L}G)$. Let Λ be the set of dominant weights in $X^{*}({}^{L}T^{0})$. Note that Λ is Γ -invariant. Let Λ/Γ be the set of Γ -orbits in Λ and $[\lambda]$ the Γ -orbit of $\lambda \in \Lambda$. For $[\lambda] \in \Lambda/\Gamma$, $e([\lambda])$ denotes the cardinality of $[\lambda]$. By the classical theory of Cartan and Weyl, there exists a bijection $R^{\sim}: \Lambda \to \Re({}^{L}G^{0})$ such that, for $\lambda \in \Lambda$, each representative of $R^{\sim}(\lambda)$ has the highest weight λ . For $\lambda \in \Lambda$, $\gamma \in \Gamma$ and a representative $R(\lambda)$ of $R^{\sim}(\lambda)$, we define the representation ${}^{r}R(\lambda)$ of ${}^{L}G^{0}$ by ${}^{r}R(\lambda)(g) = R(\lambda)({}^{r}g), g \in {}^{L}G^{0}$. Then ${}^{r}R(\lambda)$ has the highest weight ${}^{r}\lambda$. Thus we can take representatives $R(\lambda)$ of equivalence classes $R^{\sim}(\lambda)$ satisfying the following relation :

 $R({}^{\sigma^{k}}\lambda) = {}^{\sigma^{k}}R(\lambda)$ for any $\lambda \in \Lambda$, $k=0, 1, \dots, e([\lambda])-1$. For $\lambda \in \Lambda$, the representation space of $R({}^{r}\lambda)$, $\gamma \in \Gamma$ is denoted by $V_{[\lambda]}$. Hereafter, we fix a set of such representatives $\{(R(\lambda), V_{[\lambda]}) | \lambda \in \Lambda\}$.

We fix an orbit $[\lambda] \in \Lambda/\Gamma$ and put $e = e([\lambda])$. Let $\operatorname{Hom}_{L_{0}}(R(\lambda), {}^{e}R(\lambda))$ be the space of intertwining operators of $R(\lambda)$ into ${}^{e}R(\lambda)$. This space is considered as a one dimensional subspace of End $(V_{[\lambda]})$. Let $V_{[\lambda]}^{\lambda}$ be the common highest weight space of $R(\lambda)$ and ${}^{e}R(\lambda)$. Then there exists a unique element $Q_{[\lambda]} \in \operatorname{Hom}_{L_{0}}(R(\lambda), {}^{e}R(\lambda))$ such that the restriction of $Q_{[\lambda]}$ to $V_{[\lambda]}^{\lambda}$ gives the identity map of $V_{[\lambda]}^{\lambda}$. Put $A_{[\lambda]} = \{\zeta_{[\Gamma|/e}^{k} \cdot Q_{[\lambda]} | k = 1, 2, \cdots, |\Gamma|/e\}$, where $\zeta_{|\Gamma|/e} =$ $\exp(2\pi\sqrt{-1}e/|\Gamma|)$. Since one has $\operatorname{Hom}_{L_{0}}(R({}^{r}\lambda), {}^{e}R({}^{r}\lambda)) = \operatorname{Hom}_{L_{0}}(R(\lambda), {}^{e}R(\lambda))$ $= CQ_{[\lambda]} \text{ as a subspace of End}(V_{[\lambda]}) \text{ for every } \tilde{\gamma} \in \Gamma, A_{[\lambda]} \text{ depends only on the orbit } [\lambda]. For <math>Q \in A_{[\lambda]}$, the representation $(R(\lambda, Q), V_{[\lambda]})$ of ${}^{L}G^{0} \rtimes \langle \sigma^{e} \rangle$ is defined by $R(\lambda, Q)(g \rtimes \sigma^{ke}) = R(\lambda)(g) \cdot Q^{k}$, where $\langle \sigma^{e} \rangle$ is the cyclic group generated by σ^{e} . Further, let $r(\lambda, Q)$ be the representation of ${}^{L}G$ induced by $R(\lambda, Q)$. Then, it is shown that $r(\lambda, Q)$ depends only on the orbit $[\lambda], Q \in A_{[\lambda]}$ and it is irreducible. Hence, if we denote by $r^{\sim}([\lambda], Q)$ the equivalence class containing $r(\lambda, Q)$, then we obtain a map $r^{\sim}: \prod_{[\lambda] \in A/r} A_{[\lambda]} \rightarrow \mathcal{R}({}^{L}G), ([\lambda], Q) \mapsto r^{\sim}([\lambda], Q)$. By standard arguments in the representation theory we obtain the following

Theorem 1. The map
$$r^{\sim}: \prod_{[\lambda] \in A/\Gamma} A_{[\lambda]} \to \mathcal{R}({}^{L}G)$$
 is bijective.
For $r = r^{\sim}([\lambda], \zeta_{|\Gamma|/e([\lambda])}^{k} \cdot Q_{[\lambda]}) \in \mathcal{R}({}^{L}G)$, we put
 $e(r) = e([\lambda]), \quad c(r) = 2\pi k (|\Gamma| \log (q_{F}))^{-1} \sqrt{-1} \quad \text{and} \quad \xi_{r} = \sum_{|\lambda| \in [\lambda]} \lambda'.$

Since the set of Γ -invariant elements in $X^{*({}^{L}T^{0})}$ coincides with the cocharacter group $X_{*}(S)$ of S, ξ_{r} is contained in $X_{*}(S)$. Let $\mathcal{R}_{0}({}^{L}G)$ be the set of $r \in \mathcal{R}({}^{L}G)$ such that $\langle \alpha, \xi_{r} \rangle = 0$ for any $\alpha \in \Phi$, where $\langle , \rangle \colon X^{*}(S) \times X_{*}(S) \to \mathbb{Z}$ is the natural pairing and Φ is the root system of G with respect to S. Further, let $\mathcal{R}_{+}({}^{L}G) = \mathcal{R}({}^{L}G) - \mathcal{R}_{0}({}^{L}G)$.

3. The construction of Euler factors. For $\chi \in X_{\text{reg}}(T)$, let $\mathcal{WH}(\chi, \varphi)$ be the Whittaker model of $\rho(D_{\chi})$ with respect to φ . For $r \in \mathcal{R}({}^{L}G)$, $f \in \mathcal{WH}(\chi, \varphi)$ and $s \in C$, we define the zeta integral by

$$Z(s,r,f) = \int_{F^*} f(\xi_r(t)) |\mathsf{t}|_F^s \cdot \delta_B^{-1}(\xi_r(t)) dt,$$

į

where dt is a Haar measure on the multiplicative group F^* of F. By a careful analysis of the behavior of Whittaker functions on S(F), we obtain the following

Theorem 2. (1) Let $r \in \mathcal{R}_+({}^LG)$ and $\chi \in X_{reg}(T)$. Then, for any $f \in \mathcal{WH}(\chi, \varphi)$, the zeta integral Z(s, r, f) is absolutely convergent for $Re(s) \gg 0$.

(2) For $(r, \chi) \in \mathcal{R}_+({}^LG) \times X_{\operatorname{reg}}(T)$, let $P(r, \chi)$ be the set of polynomials $P(X) \in C[X]$ such that $P(q_F^{-s})Z(s, r, f)$ is an entire function of s for any $f \in W\mathcal{H}(\chi, \varphi)$. Then $P(r, \chi)$ is a non-trivial principal ideal of C[X] and has the generator $P_{r,\chi}(X)$ with $P_{r,\chi}(0) = 1$.

The generator $P_{r,\chi}(X)$ of $P(r,\chi)$ is uniquely determined by the pair (r,χ) and is independent of the choice of φ . The Euler factor attached to (r,χ) is defined to be $L(s,r,\chi) = P_{r,\chi}(q_F^{-s})^{-1}$. Another kind of Euler factor was defined by Langlands (see [1]). Denoting by $L(s,r,Sp(\chi))$ the Euler factor given by Langlands, we obtain

Theorem 3. For any $(r, \chi) \in \mathcal{R}_+({}^LG) \times X_{reg}(T)$, $L(e(r)(s-c(r)), r, \chi)^{-1}$ is a factor of $L(s, r, Sp(\chi))^{-1}$ as a polynomial of q_F^{-s} .

Actually we can give a more explicit expression for $L(s, r, \lambda)$ and comparing it with the corresponding part of $L(s, r, Sp(\lambda))$ we get Theorem 3.

273

No. 7]

T. WATANABE

References

- [1] A. Borel: Automorphic L-functions. Proc. Symposia Pure Math., 33, part 2, 27-61 (1979).
- [2] F. Rodier: Sur les facteurs eulériens associés aux sous-quotients des séries principales des groupes réductifs p-adiques. Journée Automorphes, Publication de l'Université Paris VII, vol. 15, pp. 107-133 (1982).
- [3] T. Watanabe: The irreducible decomposition of the unramified principal series, Proc. Japan Acad., 63A, 215-217 (1987).