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1. Introduction. Let d be a negative square-free integer and let
K=Q(/-d) be the imaginary quadratic field. We denote by o the integer
,/d (resp. (1/2)(1+/d)) if d2 or 3 (mod 4) (resp. d__=l (mod 4)), and by
z/ and h the discriminant and the class number ot K, respectively. We
define the pvlynomial P(x) by

P(x)={x+N() i {d--2, 3 (mod4)
x+x+N(w) d-- 1 (mod 4),

where N stands for the norm map. Following Pro. T. Ono, we define the
natural number p by

p= max {the number of prime factors o.f P(a)}
0<a< Iz/KI/4-1

when d=/=--l,--3 and pK=l when d----l,--3. Using p, Rabinovitch’s
theorem in [2] can be formulated in the following way:

Theorem.
hK- 1::p-- 1.

The aim of this note is to prove the ollowing
Theorem 1.

h: p:.
Theorem 2.

h-2p--2.
In his lecture at the Johns Hopkins University in t]ae all of 1984, T.

Ono raised the question to examine if these theorems hold.
During the preparation of this note the author obtained useful sug-

gestions trom conversation with Prof. Ono and trom his lecture, to whom
he would like to. express his hearty thanks.

2. Proof of Theorem 1. Let be an ideal in the integer ring ( of
the imaginary quadratic field K-QG/d). Let a be the smallest positive
integer in and c the smallest positive integer such that b +c is contained
in a for some integer b; then a and c are uniquely determined by a and b
is uniquely determined, modulo a, by . In this case the Z-module
[a, b+ c] generated by a and b+c becomes the ideal and its norm N
is given, by ac. Since is an ideal, both of a and b are divided by c.

Lemma 1. Let a and b be integers with a:>0; then the Z-module
[a, b+o] generated by a and b+o becomes an ideal if and only if a divides
N(b+oO. In this case the following hold:
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(1) If a=aa then [a, b+o]--[a, b+(o][a, b+o].
(2) If l<a<N(o) then [a, b+o] is not a principal ideal.

Proof. We shall prove the part (2) only. If a-[a, b+w] is a principal
ideal (a), then there exist integers x and y such that a=ax+(b+o)y.
Since K is imaginary, N(a) is positive hence Na=a IN(a)[= N(a) a(ax
+ Tr (b + o)xy+ (1 / a)N(b +o)y). Thus we get ax + Tr (b + o)xy+ (1 / a)N(b
+ o)y a(x+ (1/(2a) Tr (b + w)y) + (1/a)(N(b + o) (1/4) Tr (b + w))y 1
hence N(b+o)-(1/4) Tr (b+o)=N(o)--(1/4) Tr (o)<a when yve0 or a=l
when y=0. Therefore we get a>N((o) or a=l. Q.E.D.

Lemma 2. Let a and b be integers such that aO, alN(b+o) and
N(b + o)N(o). Then the ideal [a, b + o] is a principal ideal if and only
if a=l or a=N(b+o).

Proof. The "if" part is trivial, so we shall prove the "only i" part.
Let a’=N(b+o)/a; then aa’--N(b+o)N(o). Hence l<aN(o) or la’
N(w). The first case occurs only when a=l by Lemma 1. Since
[a, b + o][a’, b + w] [aa’, b + w] (b + w), [a’, b +] is also principal. By the
same reason as the above, the second case occurs only when a’=l, i.e.,
a=N(b + o). Q.E.D.

Now we shall prove Theorem 1. When d---1 or -3, the assertion
holds trivially. So we may assume d:/:-l, --3. By the definition, p is
the number of prime factors of P(b)=N(b/w) or some b satisfying 0<b
<(1/4) Iz]-l. Let p, ..., p (n=p) be the set of prime actors o P(b).
We denote by p, the ideal [p,, b+o]. Then the ideal classes (p), (pp.), ...,
(pp...p) are mutually distinct. For if (p...p,)=(p...p) with i], then
(p,/...p)=([p/...p, b+o])=l; hence [p,/...p,b+o] is a principal
ideal. On the other hand it is easily seen that P(b)<P((1/4)I2]-I)
N(w). This contradicts to the result in Lemma 2. Q.E.D.

:. Proof o Theorem 2. We shall use the fcllowing well known
fact (c. [1]):

Lemma :. Any ideal class of K cgntains an integral ideal a such that

For the completeness, we shall give a proof of Ravinovitch’s theorem.
Since hp, we shall prove the implication p-lh--1. Suppose h

1. Let p be a non-principal ideal having the smallest norm. Then p is
a prime ideal and Np is a rational prime number. In fact if
is the decomposition into prime ideals, then some p, is not a principal ideal
and Np=Np,...NPt. Hence, by the property of p, t must be 1. Since p is
prime, Np must be a prime or the square of a prime. If Np is the square
of a prime, p is principal. Furthermore we can assume Np=p</[]/3.
Let p [p, b + o] for some integer b such that 0 b p and p ]N(b+ o). If
d=/=-l,--3, then ]]>/6 and bp/ll/3iz1l/4. By the assumption
p 1, P(b) N(b +o) must be a prime hence N(b + (o) p and p [p, b + o]
is principal. This is a contradiction. If d----1 or --3, we have h=l.

Q.E.D.
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Our original proof of Theorem 2 was somewhat complicated. Dr.
J. B. Svirsky suggested to us a simplified proof, which we shall give here.

By the Ravinovitch’s theorem and Theorem 1, it is sufficient to show
that p=2 implies h=2. Let p and q be non-principal prime ideals such
that Np=p, Nq=q/IAI/3. Then p and q are prime numbers since p and q
are not principal. Moreover pq becomes principal. In fact let pq--[a, b+
co] for some integers a, b and c such that a, c0; c}a, clb and Oba.
Then ac=N(pq)=NpNq=pq; hence c=l and a=pq, i.e., pq=[pq, b+o] and
Obpqll/3. When pqTr (b+o), 2b+Tr (o)Tr(b+o)pqlAl/3
hence b(1/6)lAl-Tr(o)/2. If IAl12--6Tr(o), then b<(1/4)IAI--1.
Since p=2, it follows that P(b)=pq; hence pq=(b+o) is principal. If
IAI12--6Tr(), then. d=--l, --2 or --3; hence h=l. When
Tr(b+o), the conjugate (pq)’ of pq becomes [pq, b’+w], where b’=pq--
Tr (b + o) + b. In this case pq-- Tr (b’+ o) Tr (b +o)-pq)O. By the
same argument as above, we see that (pq)’ is principal hence pq is principal.
Now we shall show that every ideal class is of order 2. Let p be an ideal
such that p is not principal and has the smallest norm. Then p is a. prime
ideal, Np=p is a rational prime and p/IAI/3. By the above argument,
we see that p is principal. Now suppose h>4. Let p be a non-principal
ideal having the smallest norm and q a non-principal ideal such that q is
not equivalent to p and has the smallest norm; then p and q satisfy the
condition in the first part of the proof. Therefore p.q is principal. Since
both of p and q are principal, q is equivalent to p. This is a cntradic-
tion. Q.E.D.

Remark. There are quadratic fields K=Q(/-d) such that hp.
For example when d=--21, h=4 and p=3.

In [3], we shall treat also the case of real quadratic fields by the same
method.
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