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1. Introduction. Let U be the unit disc {Izll} in C. A function f
holomorphic in U is said to belong to the class M if

log Mf(O)

where Mf(O)=sup0< If(re*O)l and log x=max (log x, 0), x>0. The class
M was introduced and sudied in [3]. I is shown tha

HMN+,
p>0

where H is the usual Hardy class of order p>0 and N the Smirnov class.
See [1] or [2] for he general heory of H and N+.

The space M with the meric given by

2
is an F-algebra, i.e., a topological vector space with a complete translation
invariant metric in which multiplication is continuous. The class M has
many similarities with the Smirnov class N as an F-algebra. See [3] and
[4]. For example, the following are noted in [3].

(1) For e U, if we define
r(f) =f(), f e M,

then is a continuous multiplicative linear functional on M. Conversely,
if r is a nontrivial multiplicative linear functional on M then r= for some
2eU.

(2) If e U and m={fe M:f(D=0} then m=(z--)M and m is a
closed maximal ideal of M.

(3) There exists a maximal ideal m of M which is not the ker:eel of
a multiplicative linear functional on M.

In this note, we show that every closed maximal ideal is the kernel of
a multiplicative linear functional on M (see Corollary 5). The cvrrespond-
ing theorem for N was proved [4].

2. Main theorem.
Lemma 1. Let m be a nonzero ideal of M. Then m contains a bounded

holomorphic function which is not identically zero.
Proof. Let f e m and f0. Since McN+, f can be factored canoni-
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cally as follows [1]"
f(z) B(z)S(z)F(z),

where B is the Blaschke product with respect to the zeros of f, S the
singular inner function associated with f, and

F(z)=exp (-: e+z log If(e)l dr)et- z
the outer function associated with f. If we set

( 1 Soe+z lg/]f(e)]dt)g(z) exp ---- i_ z
then g e M. In fact, g is bounded. Since m is an ideal of M, fg m and

( 1 ie+z lg-’f(e)’dt)f(z)g(z)=B(z)S(z) exp --- et-z
is bounded. This completes the proof.

Lemma 2. Suppose that F e M never vanishes on U. Then there
exists a sequence {F} of functions F= in M such that Fnn-F and F=-+I in
M as n--c.

Proof. Since F never vanishes on U, there exists a positive continuous
function ((z) on U such that

F(z) R(z)e(), z e U.
We define

F(z) R(z)/ne(/)s(), z e U.
Then F(z) is holomorphic in U and Fn=F. We note that F as a nonzero
unction of N has nonzero radial limits almost every . We fix such a t.
Then R(re) is a positive continuous function of r on the closed interval
[0, 1]; so we can find positive numbers l and L so that

Ol<R(re)<L c, 0<_r<l.
)(re) also being a continuous function of r on [0,1] it is bounded. There-
ore we can conclude that

F(re)l, (n-+ c),
uniformly on r (0<r<l). Hence we have

M(F- 1)(t)-+0, (n-+ c), a.e. t.
We note that

log MF(O)<_1 log MF(O)<log MF(O), n 1, 2,
n

and
log (l+M(F--l)(0))<log 2+log (MF(O)+I)

<_2 log 2+log MF=(O)
<_ 2 log 2+log MF(O), n 1, 2, ..

We have F e M and d(Fn, 1)--+0 as n--+c by the dominated convergence
theorem. This completes the proof.

Lemma 3. Let B be an infinite Blaschke product and let B(z)=
B(z)g(z), where

Bn(z) a a z
= a 1--z
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and

g(z) a a-- z
/1 a 1-z

Then g-.1 in M as
Proof. If we note that log(l+x)<_x (x0) and use HSlder’s ine-

quality, we have

d( 1)=:log (I+M(.-1)()) d

2

We now apply the complex maximal theorem and use the fact that
1 to get

d(g, 1)<C(I:’gn(e)-l] dO

where C is a positive constant. By [2, p. 66], the last term in the above
inequality tends to zero as n. Therefore gl in M.

Theorem 4. Let m be a nonzero prime ideal of M which is not dense
in M. Then m=m for some l e U.

Proof. Suppose that mCm for any I e U. By Lemma 1, m contains
a bounded holomorphic unction f. We know that f can be actored as

f=BF where B is the Blaschke product with respect to the zeros o f and
F is a bounded function with no zeros. Since m is prime, either F e m
or B em. Suppose F e m and let F be defined as in Lemma 2. Then F,
e m by the primeness of m. By Lemma 2, 1 e ; so =M, a contradic-
tion. Now, we suppose B e m and let

B(z)= a] a--z

I (a- z) / (1 --az) e m, then

so m=ma by the maximality of m,, a contradiction. Therefore
a--z /m, k=l,2,
1 /

Since m is prime, B should be an infinite Blaschke praduct. If we set

g(z)= la] a_ --z 2n 1, ,...,
n a 1--az

thengemby the primeness of m. By Lemma3, gl in M as n.
Therefore I e m, a contradiction. Hence we conclude that m=m or some
2 e U. This completes the proof.
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Corollary 5. Every closed maximal ideal of M is the kernel of a
multiplicative linear functional.

Proof follows from Theorem 4 and (1).
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