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In [14] Nagell showed that there are infinitely many imaginary quad-
ratic extensions of the rational number field Q, each of which has class
number divisible by a given integer. Subsequently several authors have
proved this result (see [1], [4], [5] and [17] as well as the most recent proof
by Uehara [16]). In this paper we generalize this well-known result by
explicit construction of infinitely many imaginary quadratic extensions of
a given number field K (subject only to having a totally ramified rational
prime) each with class number divisible by a given integer. The proof
and construction given is simpler than that given in previous proofs cited
above for the trivial case K=, and applications are given. The next
result is a sufficient condition for an arbitrary quadratic extension of @ to
have an element of given order in its class group. Finally for a certain
class of real quadratic extensions of @ we give a sufficient condition for
its class number to be divisible by a given prime, and we provide applica-
tions.

Before presenting the first result some comments on notation and a
lemma are required. For a given number field K, h(K) denotes the class
number of K, Cr denotes the class group of K, ©Or denotes the ring of
integers of K, (@) for a € O denotes the principal ideal generated by «, and
N(-) denotes the norm from K to Q.

In the proof of Theorem 1 we will need the following result whose
proof (mutatis mutandis) is the same as that of [1, Lemma 1, p. 321] of
which the following lemma is a generalization.

Lemma 1. Let ¢ be any positive real number and let p be any odd
prime. Denote by N the number of square-free integers of the form p?—x*
where x s an even integer such that 0<x<ep??. Then for g sufficiently
large, N>c,ep?” where ¢, is a positive constant depending only on p.

Theorem 1. Let t>1 be any integer. If K is any algebraic number
field in which there is a totally ramified rational odd prime p, then there
are infinitely many tmaginary quadratic extensions L of K such that t|h(L).
Moreover L may be chosen of the form K(y/n) where n is any square-free
rational integer of the form n=r'—m' where p does not divide n and r is
an even integer subject to r*<m' - (m—1).

Proof. Let r be an arbitrarily chosen but fixed even integer. Let n
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be an integer of the form n=7*—m’ where m is any odd integer with 7*<
mi~'tm—1) and p does not divide n. By [7, Corollary 2.6] ¢|h(Q(y7)).
Therefore there exists an abelian unramified extension E of F=Q(y ™)
with |E: F|=t. By Abhyankar’s Lemma (see [2] or [3]) KE(/ %) is an
unramified extension of K(y/n). Moreover we claim that KNE=F. To
see this we recall that p does not ramify in F since p fails to divide n.
Since p is totally ramified in K and ramification degrees multiply in towers
then any Q(,/ % )-prime above p is totally ramified in K(,/%). This proves
the claim. Hence from [6, Theorem 7, p. 263] it follows that KE(/ ) is
of degree t over K(,/ 7). The following diagram describes the situation :

K(ymw) E
/

K< >Q(«/%t)=F
Q

To conclude the proof of the theorem it remains to show that there are
infinitely many square-free integers of the form n=17*—m' where r is even,
r*<m'~'(m—1) and p does not divide n.

Let e=[(p—1)/p]"* and let k be sufficiently large such that g=#kt
satisfies the hypothesis of Lemma 1; that is, the number N of square-free
integers of the form m‘—7?, with m=p*, and 0<r<em'” is greater than
cem'?.  Since ¢ is fixed and ¢, is a positive constant depending only on p
then & may be chosen such that N is as large as we want. Q.E.D.

The following application to biquadratic fields is immediate from
Theorem 1.

Corollary 1. Let K=Q(,/ s) where s is any square-free integer, and
let F=Q(/ %) where g.c.d. (n, 28)=1, n=1r*—m‘ is square-free, r’<
m!~'(m—1) and r even, then t|R(KF). (In fact t|h(F).)

The following is an application to imaginary quadratic extensions of
pure fields of prime degree (see Mollin [11, pp. 421-423]).

Corollary 2. Let K=Q((*y/ D) where p is an odd prime, and let n be
o square-free integer of the form n=r*—m relatively prime to p and with
r even, and r*<m''(m—1); then t | L(K(/ ).

The reader may compare the above with Mollin [8, pp. 166-168] where
conditions for the divisibility of the class numbers of imaginary quadratic
extensions of cyclotomic fields by a power of 2 are given.

We now turn to establishing a sufficient condition for any quadratic
field to have an element of order ¢>>1 in its class group for a given integer ¢.

Theorem 2. Let K=Q(y M), where n=a*—4b" is a square-free integer
where b>1 and t>1 are integers. If +0b° is not the norm of any element
of Ok for all ¢ properly dividing t then t divides the exponent of Cg.



No. 1] Class Numbers of Quadratic Extensions 35

Proof. Let b=p...p where the p,’s are distinct rational primes
and the a,’s are positive integers. Clearly each p, splits in K, so p,Ox=
P.0,; where P, and Q, are Og-primes for i=1,2, ---,r. Leta=(a+/7)/2
and a=(a—4/n)/2, then (b)'=(aa)=[]i., (P,Q0)“. Since a+a=a, (a—a)
=n and g.c.d. (a, b)=1 (whence g.c.d. (a, n)=1), then P, divides both «
and @z only if 1 is in &,. Therefore, for an appropriate choice of R,=P,
or O, we must have that (a)=([];-, R¥)'=A", say. If °is principal for
any c properly dividing ¢ then N( )= £ b¢ violates the hypothesis. Hence
A is an element of order ¢ in Cy; i.e., t divides the exponent of . Q.E.D.

Maintaining the notation of Theorem 2 we have:

Corollary 3 (Mollin [7, Corollary 2.4]). If n=a*—4b'<0 and a*<
4b*-Y(b—1) then t divides h(K).

Note that if ¢ divides the exponent of C, then there is a non-principal
ideal 4 such that = («) for some « € O, but J° is not principal for any ¢
properly dividing ¢. Therefore if a=(a+sy/m)/2 then a’—s*m=4b* where
N(J)=b;i.e., K=Q(/n)=Q(/m) for n=s*m. Isthe converse of Theorem
2 valid?; i.e., is it true that if ¢ divides the exponent of C; then +b° is
not the norm of any Be @ for all ¢ properly dividing t? Note that if
such a p exists then N(J)=N(B). However this does not necessarily
imply that ° is principal. Is there some restriction on K such that the
condition “+b° is not a norm of an integer in ©;” becomes necessary and
sufficient for ¢ to divide the exponent of C,? Compare the above with
Uehara [16, Theorem 2, p. 257].

We now turn to the real quadratic field case.

Proposition 1. Let K=Q(y/ %) where n is a square-free integer of the
form n=a*+t?=%=1 (mod 4) where a>0 and t>1 are integers and p is a
prime. Suppose furthermore that n=(st)*-+r>T7 where the following con-
ditions are satisfied :

(i) s>1, t not a square and g.c.d. (¢, r)=1.

(ii) r divides 4s with —2s<r<2s;
then p divides h(K).

Proof. By Mollin [9, Theorem 1.2] x*—mny?*=+t is not solvable in
integers (x, ¥), and so by Mollin [10, Theorem 3], p divides i(K). Q.E.D.

The following table provides examples as an application of Proposition1.

Table I
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All class numbers are taken from B. Oriat’s “Groupes des Classes des
Corps Quadratiques Réels Q(v d), d<10,000”, Faculté des Sciences de
Besancon.

Finally we note that Proposition 1 has relevance to the representation
of integers as sums of powerful numbers, (see [12] and [13]), a difficult
problem in elementary number theory.
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