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1. Introduction. Let R be a commutative ring with identity and G
be a group. We denote the augmentation ideal of the group ring RG by
4x(G@). There are many problems and results relating to 4,(G) (cf. [6]).
In particular, it is an interesting problem to characterize the group rings
whose augmentation ideals satisfy some conditions. In this paper, we
treat the Lie property. We recall some definitions. Let S be a ring and
I be a two sided ideal of S. Then I and I are the ideals of S defined
inductively as follows, respectively.

=], [+ =[[ [™]S

Iv=], I =[I, I™]8,
where [M, N] is the additive subgroup of S generated by the elements of
the form [m, n]l=mn—nm with me M and ne N. We say that I is Lie
solvable (resp. Lie nilpotent) if I”=0 for some n (resp. [® =0 for some 7).
And I is called residually Lie solvable (resp. residually Lie nilpotent) if
M I™=0 (resp. () I™=0).

Parmenter-Passi-Sehgal [5] characterizes those groups G such that
4x(G@) is Lie nilpotent. The condition under which 4,(G) is residually Lie
nilpotent when k is a field is also known (cf. [6]). Further, Musson-Weiss
[4] gave the characterization of the groups G such that 4,(G) is residually
Lie nilpotent. In [7], the groups G such that RG is Lie solvable are
characterized (Lie solvability in our sense is called “strong” Lie solvability
in that book). On the other hand, we have 4$’(G)=RG™ and 4(G)=RG™
because [z, yl=[x—e(x)-1, y—e(y)-1] where z, ¥y € RG and ¢ is the augmen-
tation map. Thus those groups G such that 4;(G) is Lie solvable are
already characterized. Now the aim of this paper is to show the following

Theorem. Let G be a finite group. Then (M 4§7(G)=0 if and only if

G’ is a p-group for some prime p, where G’ is the commutator subgroup
of G.

2. DPreliminaries. The following is the key lemma to prove our
theorem. -

Lemma. Let R be a commutative ring with identity and G be a finite
group. Let K, L be the subgroups of G such that KLZN (K) and put
N=(K,L)y=<{k1"'kl|ke K,le LY. Then for any v € N and n=2, we have
(=) INF* %2 —1) € 45°(G).

Proof. We use the induction on n. Since
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ghg~h' —1={(g—1)(h—1)— (h—1)(g—D}g~h""
for g, he G, we have x—1¢e 4P(G) for any xe N<G'. Assume that ()
holds for n—1. Letg,heN, xe K and ye L. Since 4¢(G) is an ideal,
INF*(g—1a and [N *h—1)y belong to 4¢L(G) by the induction
hypothesis. Thus we have
N[ "*g—Dx, INF"**(h—1)y]
=N -4(g—1)(h* — Dy — (h—1)(g" —Lyya} € 4(G).
Thus >, cx N7 H(g —1)(h" —1)ay — (h—1)(9¥ — L)y} also belongs to 48(G).
Since L N4(K) and N=(K, L), we have LXNN). Thus g*e N, and we
obtain
> INF (g —D)(h* —Day — (h—1)(9" —D)yz}

geEN

=|N I”‘l"‘{((gév N—INDR =Dyxy —(h—D((2, 9)—|NDyz}.

Here, G ,en 9)(*—1)=(R—1)C,ex 9)=0 because h® heN. Hence we
have

INF" (A= k") 2y — (A —h)yx} € 4(G).
And therefore
> INF A= h)ay — (- hyya)
=|NFT(N|- 3, h(@yz'y ' —Dyx € 49(G).
heN

Here, O ex M) (@yx'y~'—1)=0 since xyx~'y~' e (K, L)=N. Thus we have
INP" T ayx 'y~ —Dyzx € 4P(G).

Hence |[N" 7' (xyx~'y'—1) € 4P(G) because 4%(G) is an ideal. Thus our

lemma is proved.

As a special case, we state the following

Corollary. Let G be a finite group. Then we have

|G (e —1) € 4P(G) for any x € G’ and n=2.

Proof. Apply Lemma with K=L=G@G.

3. Proof of the theorem. Now we prove our theorem. First we
show the if part. By [3], 4,(G’) is residually nilpotent. On the other
hand, as is shown in [1], we have

Q a4 (G)g(o (4AGH"ZG.
Thus M 45°(G)=0.

Next we consider the converse.

Case 1. There exists a prime p such that (P, N;(P))#1 where P is a
Sylow p-subgroup.

We claim the following.
(xx) If x—1e M 45mz(G) for x € G, we have x=1.

Assume that ©—1¢€ (") 45,nz(G). In other words, x—1 € 45°(G)+p™ZG
for any n, m. Now pick iqbg € (P, Ny(P))=N and apply Lemma with K=P
and L=N,(P). Then we have |[N["*-*(g—1)e 45°(G). Noting that |N| is

a p-power, we have p™(g—1) e 4¢*(G) for large m. Therefore we have
(x—1)(g—1) e 4(G) for any n, and (z—1)(g—1)e N 4¥(G)=0. This
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implies =1 because g=+1, and (x*) is shown.

Now let g be any prime distinct from p and @ be a Sylow g¢-subgroup
of G (if there are no such primes, G is a p-group and we have nothing to
show). Let « be an element in Q’. Then by Corollary and the fact that
q is a unit in Z/p™Z, we have z—1¢ ﬂ A%mZ(Q)Cﬂ 452 w7(G). Thus we

Z/pmZ
get =1 by (*+), and therefore @ is abehan Hence any two elements of
@ which are conjugate in G are conjugate in N4(Q) by the lemma of

Burnside (cf. [2]). Combining the focal subgroup lemma (cf. [2]) with this
fact, we have

QNG = Y|z, ¥ e Q, v~ Y>=(Q, No(Q)).

Na(@)

Now again apply Lemma with K=0Q and L=N,(Q). Then we obtain
QNG "= (x—1) € 4P(F) forn=2if reQNG.
This, however, implies that ©—1¢ M) 4§/,.,(G) because g#p. It follows

that =1 by (+*), and we have QOG’=1. Since ¢ is any prime distinet
from p, G’ is a p-group.

Case 2. For any prime p dividing |G|, (P, Ng(P))=1 where P is a
Sylow p-subgroup.

Since Ny(P)=C,(P), G is a p-nilpotent group by the theorem of
Burnside (cf. [2]) and P is abelian for any p. Therefore G is nilpotent,
and in addition, G is abelian. This completes the proof of our theorem.

Remark. We can use the above lemma in a similar way as in the
proof of the theorem to simplify the proofs of results in [3], [4], [5] con-

cerning RG with (residually) Lie nilpotent or Lie solvable augmentation
ideals when G is a finite group.
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