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§1. Introduction. This note presents a stability theorem to singu-
larly perturbed stationary solutions (SPS) of the systems of nonlinear
diffusion equations with a small parameter ¢>0:
®) U=+ f(u,v) and v,=Dv,,+9u,v), xel=(,1), t>0,

u,=0=1v,, x € dl={0, 1}.
The existence problem of SPS has a rather long history, see, for instance,
[8]. For the stability properties of SPS, however, very few works have
been known (see [2]). An exception is the work for degenerate case ¢é=0
of a simple density-dependent diffusion system ([1]). Recent works of the
authors ([7] and [8]) show the stability of SPS for large D, where the basic
method is a perturbation from the limit of D 1 +cc. However, the stability
of SPS for a general D has remained open up to the present time. In
this note, we give a new idea to solve the stability problem of SPS of
one mode type (SPS1) for a general D, where the singular limit eigenvalue
problem plays a key role. Let us state the main assumptions for f and
g. They are smooth functions defined on an open set © in R? such that
(A.1) The nullcline of f is sigmoidal, and consists of three curves u="h_(v),

hy(»), and h, () with h_(v)<hy(v)<h,(®).
(A.2) J(v) has an isolated zero at v=v* such that dJ/dv<0 at v=v*, where

b+ (V)
J()= f(s, v)ds.
h—(v)

anim el E

Then dG/dv<0. Moreover, g>0 on the curve C, :u=h,(v) for
v=v*, and g<0on C_:u=h_w) for v<v*. Also, f,<O0onC,UC..
(A.4) (Stability Assumption) On C, UC., ¢,<O0.
For the definitions of function spaces H*(I), H%(I), and C*(), see [5] and
[6]. Under (A.1)-(A.3), the following result is known.

Existence Theorem of SPS1 (Mimura-Tabata-Hosono [5] and Ito [4]).
Suppose there exists a monotone increasing solution V=V*(x) of DV, +
G(V)=0 in I with V,=0 on al, for a given D>0. Then, there exists a
constant ¢,>0 such that (P) has an e-family of SPS1 U= (u(x;¢), v(x;¢))
for 0<le<ep. U is uniformly bounded in C2X C?, and satisfies

lim, ,, u(x; &)= v*wf’——-‘{ﬁ%iﬁﬁii 2 2 Eg*xg
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uniformly on I\I, for any >0, and

lim, ,v(x; &)= V*(x) uniformly on I.
Here x* indicates the layer position, uniquely determined by V*(x)=1v%*,
and I,=(x*—k, x*+k).

Since (P) is a system of semi-linear parabolic equations, the stability
of U* is determined by the spectra of the linearized eigenvalue problem :
(LP) W+ fLw+fiz=4w and Dz, +9.w+giz=42, in I,

w,=0=z¢, on ol,

where all the partial derivatives are evaluated at U¢. If Re1<0 for all
eigenvalues of (LP), then U® is an asymptotically stable solution of (P).
It will be convenient to divide the spectrum into two classes; one is ¢ritical
eigenvalues which converge to zero as ¢ | 0, and the other noncritical ones
which are bounded away from zero for small e>0. Note that noncritical
eigenvalues are not dangerous to the stability of U® as shown in Lemma 3.
Therefore, the stability depends wholly on the asymptotic behavior of
critical eigenvalues as ¢ | 0. Our conclusion is the following.

Main Theorem. Under (A.4), and (A.1)-(A.3) as well, there exists
only one critical eigenvalue 2= 2(e), and which is real and simple. When
e} 0, it behaves as ()= —7e(>0).

See [9] for the complete proof.

§2. Singular limit eigenvalue problem. Letusintroduce the singular
limit eigenvalue problem, which has a Dirac é-function at the layer posi-
tion 2*. First, we need the following.

Lemma 1. Let {C, ¢:} be the complete orthonormal system of Sturm-
Liouwville problem :

L=+ fip=Cp  inl, and $,=0 on ol.
Then, the principal etgenvalue (& is positive for ¢>0, and tends to zero
when ¢ | 0 as Li=¢Cy(c), where Cy(e) is continuous and £,(0)>0. All the other
eigenvalues remain strictly negative as ¢ | 0, namely, < —p<0 for n=1.
The principal eigenfunction ¢; is positive, and

[ sae=0(v%).

Since {; can never be an eigenvalue of (LP), it follows that w=
(LE—=2)"(—fi2) for Re 2> —p. A substitution of this into the second equa-
tion of (LP) leads to
(1) Dz, +G5— DK =T33, ¢ 9udi+ 950 (LF — D'(— fi2) + 952= 2z,
where ( , ) denotes the inner product in L*space and

Le—2ra= 3 <82 g
=1 {&—2
(L =2': L)()—L*() N {gs}* is uniformly L*-bounded with respect to ¢ for
Re 1> —p. One has to derive a limiting equation of (1) as ¢ | 0 without
losing information about the behavior of 2. The first important step is
the following.
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Lemma 2. (L*—2)' becomes a multiplication operator when ¢ 0.

More precisely,
lim,,, (L*—D'u=u/(ff—2) in L*-sense
for any bounded u € L*(I) and Re 2> —yu, where f¥=f,(U*(x), V*¥()).

If 2 is a nonecritical eigenvalue, the second term of the left side of (1)
goes to zero in L’-gense as ¢ | 0. Therefore, using (A.3) and (A.4), one
obtaing an a priori bound for noncritical eigenvalues for small ¢>0.

Lemma 3. Re i< —4,<0 for any noncritical eigenvalue i, where 3, is
a positive constant which does not depend on e.

The next lemma is crucial to derive the singular limit.

Lemma 4.

lim,,, — figs/ v/ € =cf* in H-'-sense,

lim, , g¢5/ v/ ¢ = cFo* in H-'-sense,
where 0* is a Dirac d-function at x=x*, namely, §*=06(x—x*), and cf
(i=1, 2) are positive constants determined by — f¢ and g:, respectively.

Let us write the critical eigenvalue 2 in the form of 1=er(c), where «
is a continuous function of e. This scaling will be justified in §3. Using
Lemmas 2 and 4, the limiting equation of (1) called the singular limit
eigenvalue problem is given by the following weak form :

(2) Doy — GEEEE* — ) (2, 5¥)C3%, ¥) — (det* - F17'%, ¥y =0,

z e Hy(), for any + € H'(I),
where {*={,(0)>0, 7,=7(0), and det*= f¥g*— f¥g*>0 from (A.3). Here-
after, z will be normalized as (z, 6*y>=1. (2) is equivalent to the following
form:
3.1) Dz,,+det*. f¥'2=0 in (0, *) U (x*, 1) with z,=0 on oI,
3.2) Dlz,]= —cfef|(C*—1y),
where

[z ]=1im, , {z,(@* +8) — 2, (x* —5)}.

Since det*/ f# is strictly negative from (A.3), the solution z of (3) under
{#, 6*y=1 exists uniquely for the appropriate z,, We denote this unique
solution by 2% and z¥. The remaining problem is to determine the sign of
z¥. The following observation is a key to judge its sign.

Lemma 5. Replacing the Neumann boundary conditions z,=0 by
Dirichlet conditions z=0 in (8), one obtains a new problem denoted by (3)p.
Then, there exists a unique solution z% of (8), with t,=0 under the nor-
malization (%, 6*>=1.

Now a comparison of the two solutions (2%, =) and (z3, 0) leads to the
following.

Lemma 6. [(z%).1<[(z¥),1<0 holds, which implies that ¢f is strictly
negative.

Consequently, the principal part of the critical eigenvalues is uniquely
determined and given by A,(¢) ~zie, which leads to the Main Theorem.

§ 3. Justification of the singular limit eigenvalue problem.

Lemma 7. The inverse operator K** from H-*(I) to Hy(I)



332 Y. NisHIURA and H. FuJn [Vol. 61(A),

K*'={—D(d*|dx”)— g3 (L* — D' (— f5:)— 95 +2-}7%,

exists for 0<e<le, and Re 2> —u. Moreover, K** depends continuously on
¢, and depends analytically on A in operator norm.

Applying the operator K** to (1), one sees that (1) has a nontrivial
solution 2 if and only if 2 satisfies
(4) KK gids |V E)y —[igi/ v e )=~ D)]e.
It follows from Lemmas 4 and 7 that left-hand side of (4) is a continuous
function of & for 0<e<¢, and analytic with respect to . Therefore, recall-
ing ¢i=el,(e) (Lemma 1), 2 must be O(¢) in order that (5) has a solution
A=2() with 2(0)=0. Hence, 1 can be written as 1=er(c), where z is a
bounded continuous function of ¢. Then, one sees that (4) is equivalent to
the following scalar equation

(5) Do, DZEc—L+ (K93t / V) — S8 /T =0

Since (0, z¥)=0 and 0%/97(0, zf)=1, where tf=C*— cFcf(K"%*, 0*), one
can apply the implicit function theorem to (5), and obtain a unique con-
tinuous solution z=z(¢) with z(0)=z¥. The sign of z} is strictly negative
as in Lemma 6, which concludes the proof of the Main Theorem.
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