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1o Introduction. This note presents a stability theorem to singu-
larly perturbed stationary solutions (SPS) of the systems of nonlinear
diffusion equations with a small parameter 0"

(p) u--2uxx-f(u, v) and vt=Dvxxq-g(u, v), x e I=(0, 1), t0,
ux=O=v, x e I= {0, 1}.

The existence problem of SPS has a rather long history, see, for instance,
[3]. For the stability properties of SPS, however, very few works have
been known (see [2]). An exception is the work for degenerate case --0
of a simple density-dependent diffusion system ([1]). Recent works of the
authors ([7] and [8]) show the stability of SPS for large D, where the basic
method is a perturbation from the limit of D - oo. However, the stability
of SPS for a general D has remained open up to the present time. In
this note, we give a new idea to solve the stability problem of SPS of
one mode type (SPS1) for a general D, where the singular limit eigenvalue
problem plays a key role. Let us state the main assumptions for f and
g. They are smooth functions defined on an open set ) in R such that
(A.1) The nullcline of f is sigmoidal, and consists of three curves u--h_(v),

ho(V), and h+(v) with h_(v)ho(v)h+(v).
(A.2) J(v) has an isolated zero at v--v* such that dJ/dvO at v-v*, where

+ (v)

J(v)= f(s, v)ds.
-(v)

(A.3) Let G(v)- (g(h_ (v), v), vv*
g(h/ (v), v), v >= v*.

Then dG/dvO. Moreover, g0 on the curve 5"+ "u--h/(v) for
v>:v*, and g0 on 5’_ "u=h_(v) for v<=v*. Also, f0 on 5"+ C_.

(A.4) (Stability Assumption) On C/ [JC_, g,0.
For the definitions of function spaces H(I), H(I), and C(I), see [5] and
[6]. Under (A.1)-(A.3), the following result is known.

Existence Theorem of SPS1 (Mimura-Tabata-Hosono [5] and Ito [4]).
Suppose there exists a monotone increasing solution V--V*(x) of DV+
G(V)--0 in I with V-0 on I, for a given DO. Then, there exists a
constant o>0 such that (P) has an e-family of SPS1 U’=(u(x D, v(x; D)
for 0o. U is uniformly bo.unded in Ci C2, and satisfies

lim,0 u(x D= U*(x)a (h_(V*(x)), x e [0, x*)
h/ (V*(x)), x e (x*, 1],
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uniformly on I\I, for any 0, and
lira, 0 v(x )= V*(x) uniformly on I.

Here x* indicates the layer position, uniquely determined by V*(x)-=v*,
and I,= (x* , x* +D.

Since (P) is a system of semi-linear parabolic equations, the stability
of U’ is determined by the spectra of the linearized eigenvalue problem"

(LP) w+fw+fSz--w and Dz+gw+gz=z, in I,
w--0=z on I,

where all the partial derivatives are evaluated at U’. If Re 20 for all
eigenvalues of (LP), then U is a.n asymptotically stable solution of (P).
It will be convenient to divide the spectrum into two classes one is critical
eigenvalues which converge to zero as $ 0, and the other noncritical ones
which are bounded away from zero for small 0. Note that noncritical
eigenvalues are not dangerous to the stability of U as shown in Lemma 3.
Therefore, the stability depends wholly on the asymptotic behavior of
critical eigenvalues as 0. Our conclusion is the following.

Main Theorem. Under (A.4), and (A.1)-(A.3) as well, there exists
only one critical eigenvalue 2=20(D, and which is real and simple. When

O, it behaves as 2o(D -’effO).
See. [9] for the complete, proof.
2. Singular limit eigenvalue problem. Let us introduce the singular

limit eigenvalue problem, which has a Dirac -function at the layer posi-
tion x*. First, we need the following.

Lemma 1. Let {, } be the complete orthonormal system of Sturm-
Liouville problem"

def
=__ +f-- in I, and Cx 0 on I.

Then, the principal eigenvalue is positive for 0, and tends to zero
when $ 0 as {=0(e), where 0(D is continuous and 0(0)>0. All the other
eigenvalues remain strictly negative as $ O, namely, <--/0 for n>=l.
The principal eigenfunctio.n is positive, and

, $dx= O(/-Y).

Since can never be an eigenvalue of (LP), it ollows that w=
(L-)-’(-fz) for Re -Z. A substitution of this into the second equa
tion of (LP) leads to
( 1 ) Dz+($-2)-(-fz, }g+g(L-2)(-f$z)+g.z=z,
where (, } denotes the inner product in L-space and

(L_2),(u) . <u,

(L--2)"L(I)-+L(I){}" is uniformly L-bounded with respect to for
Re>-p. One has to derive a limiting equation of (1) as 0 without
losing information about the behavior of 2. The first important step is
the following.
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(3.1)
(3.2)
where

Lemma 2. (L--) becomes a multiplication operator when $ O.
More precisely,

lim (L-)tu=u(f* ) in L-sense
for any bounded u e L(I) and Re 2--/, where f*-fu(U*(x), V*(x)).

If is a noncritical eigenvalue, the second term of the left side of (1)
goes to zero in L-sense as $ 0. Therefore, using (A.3) and (A.4), one
obtains an a priori bound for noncritical eigenvalues for small 0.

Lemma 3. Re 2--/00 for any noncritical eigenvalue 2, where 6o is
a positive constant which does not depend on .

The next lemma is crucial to derive the singular limit.
Lemma 4.

lim0--f//----c** in H--sense,
lim 0gl/-- c* * in H-1-sense,

where 6" is a Dirac 6-function at x-x*, namely, *--(x-x*), and c*
(i= 1, 2) are positive constants determined by -f and g, respectively.

Let us write the critical eigenvalue in the form of -r(), where r
is a continuous function of . This scaling will be justified in 3. Using
Lemmas 2 and 4, the limiting equation of (1) called the singular limit
eigenvalue problem is given by the following weak form"
( 2 D(z, 4x-c*c*(*-ro)-(z,/*(/t*, --(det* f*-’z,

z e HI(I), or any e HI(I),
where * 0(0) >0, r0= r(0), and det* * * * *fgu> (A.3)=fg-- 0 from Here-
after, z will be normalized as (z,/*}= 1. (2) is equivalent to the following
form,

Dz+det* f z-0 in (0, x*)U(x*, 1) with z=0 on I,
D[zx] --c*c*/(*--ro),

[z] lim 0 {z(x* +)-- z(x*-- )}.
Since det*/f* is strictly negative rom (A.3), the solution z of (3) under
(z, 6"}=1 exists uniquely for the appropriate r0. We denote this unique
solution by z* and to*. The remaining problem is to determine the sign of
to*. The ollowing observation is a key to judge its sign.

Lemma 5. Replacing the Neumann boundary conditions zx=0 by
Dirichlet conditions z-0 in (3), one obtains a new problem denoted by (3).
Then, there exists a unique solution z* of (3). with to=0 under the nor-
malization (z*, 6"} 1.

Now a comparison of the two solutions (z*, r0*) and (z*, 0) leads to the
fallowing.

Lemma 6. [(z*)][(z*)x]O ho.lds, which implies that to* is strictly
negative.

Consequently, the principal part of the critical eigenvalues is uniquely
determined and given by 20(e)’r0*e, which leads to the Main Theorem.

3. Justification of the singular limit eigenvalue problem.
Lemma 7. The inverse operator K’ from H-(I) to H(I)
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K"*= {--D(df/dxf)--g(L’--2)(-- f$ )-g. + 2. }-’,
exists for 0o and Re --p. Moreover, K, depends continuously on, and depends analytically o.n in operator norm.

Applying the operator K’’ to (1), one sees that (1) has a nontrivial
solution z if and only if satisfies
( 4 ) (K (go/), fo/} (-)/.
It follows from. Lemmas 4 and 7 that left-hand side of (4) is a continuous
function of for 0ee0 and analytic with respect to . Therefore, recall-
ing =0() (Lemma 1), must be O(D in order that (5) has a solution
2=2() with 2(0)=0. Hence, 2 can be written as 2=er(), where r is a
bounded continuous function of . Then, one sees that (4) is equivalent to
the following scalar equation

( 5 )  0+(K 0
Since (0, r)=0 and 3/3r(0, r)=l, where r=*-cc(K’3*,3*), one
can apply the implicit function theorem to (5), and obtain a unique con-
tinuous solution v:r() with v(0):v. The sign of r is strictly negative
as in Lemma 6, which concludes the proof of the Main Theorem.
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