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12. Random Media and Quasi-Classical Limit
of Schrodinger Operator

By Shin OzAwa
Department of Mathematics, University of Tokyo

(Communicated by Koésaku Yosipa, M. J. A., Feb. 13, 1984)

In the present note we consider a mathematical problem concern-
ing random media. We consider a bounded domain £ in R® with
smooth boundary I'. We put B(; w)={zxecR; |[ct—w|<e}. Fix
p=>1. Let 0<y(e; wim)) < ule; wim))<--- be the eigenvalues of
—4 (=—divgrad) in 2, ,m=2\U™%, B(e; w{™) under the Dirichlet
condition on its boundary. Here 7 denotes the largest integer which
does not exceed m?, and w(m) denotes the set of Mm-points {w{™}™, e 0%,
Let V(x)>0 be (C'-class function on 2 satisfying

j,, V@)de=1.

We consider 2 as the probability space with the probability density
V(x)de. Let Q®"=T[™,02 be the probability space with the product
measure. The following result which is an elaboration of M. Kac’s
theorem (Kac [3]) was given in Ozawa [4].
Theorem A. Assume that f=1. Fix a>0and k. Then,
lim,,_., P(w(m) € 2% ; m? | w(a/m ; w(im)) —pf |<e)=1

holds for any e>0 and d€[0,1/4). Here p denotes the k' eigenvalue
of —A+4raV(x) in 2 under the Dirichlet condition on I'.

In this paper we study the case 5>1. In this case the sum of the
radii of m-balls B(a/m ; wi™), i=1, - .., M, tends to co as m—cc. We
see by the argument in Rauch-Taylor [9] that u.(«/m ; w(m))—oo if
B>1, V(x)>0 and

lim w3 f(wm)= T@V(@dx

m—rco =1

for any fixed feL~(£2). We call the case g>1, V(z)>0 to be the
solidifying case following Rauch-Taylor.

The aim of this paper is to give the following :

Theorem 1. Assume that 8e[1,9/8) and V(x)>0. Fixa>0and
k. Then, there exists a constant 6(8) >0 independent of m such that

lim,, .., P(w(m) € 2% ; m”~ -9 |y (a/m ; win)) —pp | <e)=1

holds for any e>0 and & € [0, 6(B)). Here py,,, denotes the k' eigenvalue
of —A+4ArammV(x) in 2 under the Dirichlet condition on I'.

Remark. There exist constants C’ and C” such that ¢’
<m~¢-Dur  <C” holds.
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Readers may refer to Papanicolaou-Varadhan [7], [8] Simon [10],
Bensoussan-Lions-Papanicolaou [1], Huruslov-Marchenko [2], Ozawa
[5], [6] and the literatures cited there, for related topics.

We give a sketch of our proof of Theorem 1. Fix e (1,3). We
consider the following condition (D —0),,, (D — o), on w(m).

(D—0),,: Assume that 2\U?™, B(e/m ; w{™) is divided into the
connected components

o(w(m)), - - -, wg(w(m))(w(m))-
Then, g(w(m))=1 or
MAX, << gwimy 1AM @, (myy (WM <M~ log m
holds. Here diam & denotes the diameter of the set Z£.

(D—0),,: Take an arbitrary connected closed subset R, of I'

satisfying diam R.,,>2m'logm. Then
R,\UE, Bla/m; wi) .

We can easily get the following :

lim,, ... P(w(m) € 2™ ; w(m) satisfies (D —0),,, (D—o0),)=1.

We put 7>8—1. We abbreviate the largest integer which does
not exceed m? as m’. We put m” =(m’)"*. Hereafter we always as-
sume that w(m) satisfies (D—0),, (D—o),. We abbreviate o,(w(m))
as o for the sake of simplicity. Let Gu.,(x,y; w(m)) be the Green’s
function of 4—m’ in w under the Dirichlet condition on its boundary
satisfying

d,—m)G (@, Y ; wiM)) = —d(x—y), T, YEw®
Gmn(2, ¥ ; w(m))=0, Z € dw.
Let G,.,(x, ¥) be the Green’s function of 4—m’ in 2 satisfying
L, —m)G (@, Y =—0x—y), 2,yYef
G (mr(2, ¥)=0, xel.
From now on we abbreviate G.,(%, %) as G(z,y). We introduce the
following integral kernel function: We abbreviate w{™ as w, for the
sake of simplicity.
B (@, ¥ 3 W(M)) = G (&, y) — (dra/m)e™ /™ 31, G(2, w)G(W;, ¥)
+>m, (—4na/m)Tem /™ 2w G, w, )Gw,,, w;,)
s Gy, Wi )G(W,, Y)-
Here m*=(og m)* and m”=(m’)*. Here the indices (i, %, ---,%,) in
> run over all 1<, - -, 4, <7 satisfying 4,3c6,, 6360, - -+, 4,136,
An essential key to Theorem 1 is the fact that k., (x, ¥ ; w(m)), when
we congider it as an integral kernel function on o Xw, is a nice ap-
proximation of G,,(x, ¥ ; w(m)) in a rough sense, if 3—1is small. By
a probabilistic consideration we view that h.,(x, ¥ ; w(m)), when we
congider it as an integral kernel function on QX £, is a nice approxi-
mation of the integral kernel function of (—A+m’+4ramm 'V (x))!
in a rough sense. Along this line we get Theorem 1. Of course we
need hard and long calculations to obtain our result.
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