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In the present note we consider a mathematical problem concern-
ing random media. We consider a bounded domain t9 in R with
smooth boundary F. We put B( w) (x R’; Ix--w]}. Fix
fl_l. Let 0/(e; w(m))/h(e; w(m))_.., be the eigenvalues of

(m)--A (= divgrad) in tO, () 9\)3=xB(; w ) under the Dirichlet
condition on its boundary. Here. denotes the largest integer which
does not exceed m, and w(m) denotes the set of h-points t,,()__ e t9.
Let V(x)0 be C-class function on/2 satisfying

V(x)dx=l.

We consider t9 as the probability space with the probability density
V(x)dz. Let 9g-- I-I;t D be the probability spaee with the product
measure. The following result which is an elaboration of 3I. Kae’s
theorem (Kae [g]) was given in Ozawa [4].

Theorem A. Assume that =1. Fix >0 and k. Then,
limP(w(m) e 9 m’]/(a/m w(m))--/[]e)=l

holds for any0 and e [0, 1/4). Here/ denotes the kt eigenvalue

of --+4zcV(x) in [2 under the Dirichlet condition on F.
In this paper we study the case fll. In this case the sum of the

() h, tends to as m-. Weradii of h-balls B(a/m w ), i 1,
see by the argument in Rauch-Taylor [9] that /(a/m;w(m))- if
1, V(x)0 and

lim h-1 __1 f(w))= f(x)V(x)dx

or any fixed feL(/2). We call the case 1, V(x)O to be the
solidifying case ollowing Rauch-Taylor.

The aim o this paper is to give the ollowing

Theorem 1. Assume that fle[1,9/8)andV(x)O. FixOand
k. Then, there exists a constant 3(fl)O independent of m such that

lim P(w(m) e Y2 m’-(-" [[(o/m w(m)) --/,l<s)--lV
holds for any s>O and ’ e [0, (fl)) Here v k/, denotes the eigenvalue

of -A+4uhm-V(x) in tO under the Dirichlet condition on F.
Remark. There exist constants C’ and C" such that C’

<m-(-’[[,,<C" holds.



44 S. OzAwA [Vol. 60 (A),

Readers may refer to Papanicolaou-Varadhan [7], [8] Simon [10],
Bensoussan-Lions-Papanicolaou [1], Huruslov-Marchenko [2], Ozawa
[5], [6] and the literatures cited there, or related topics.

We give a sketch o our proof of Theorem 1. Fix fl e (1, 3). We
consider the following condition (D--0), (D--c) on w(m).

(D--O)" Assume that t9\= B(o/m;w")) is divided into the
connected components

o(w(m)), ..., o(w(m)).
Then, g(w(m))=l or

max._<q(()) diam o(())(w(m))_m- log m
holds. Here diam, denotes the diameter of the set ,.

(D-c)" Take an arbitrary connected closed subset

_
of F

satisfying diam _q2m- log m. Then
(m)

We can easily get the ollowing"

lim P(w(m) e w(m) satisfies (D--0), (D--c))= 1.
We put yfl-1. We abbreviate the largest integer which does

not exceed m as m’. We put m"-(m’)m. Hereafter we always as-
sume that w(m) satisfies (D--0), (D--c). We abbreviate o(w(m))
as w or the. sake. o simplicity. Let G(,,)(x, y; w(m)) be the Green’s
unction of A-re’ in w under the Dirichlet condition on its boundary

satisfying
(Zlx m’)G(,,)(x, y w(m)) (x y), x, y e o

G(,)(x, y; w(m))=0, x e .
Let G(,,)(x, y) be the Green’s function of z/-m’ in tO satisfying

(A-m’)G(,,)(x, y)=-3(x-y), x, y e [2

G(,)(x, y)=O, x e F.
From now on we abbreviate G(,)(x, y) as G(x, y). We introduce the
ollowing integral kernel function" We abbreviate (). as w for the
sake of simplicity.

h(,,)(x, y; w(m))=G(x, y)-(4o/m)e’’/= G(x, w)G(w, y)
/ ,=. (--4o/m)e’’/ () G(x, wi)a(’w1,

G(w,_, w,)G(w,, y).
Here m*=(log m) and m’=(m’)/. Here the indices (i, i.,..., i) in

() run over all l<_i,, ...,i<_#z satisfying i=i., i=i,...,i_=i.
An essential key to Theorem 1 is the. fact that h(,)(x, y;w(m)), when
we consider it as an integral kernel function on foX(o, is a nice ap-

proximation of G(,)(x, y w(m)) in a rough sense, if --1 is small. By
a pro.babilistic consideration we view that h(,)(x, y; w(m)), when we
consider it as an integral kernel function on 9X 9, is a nice approxi-
mation of the integral kernel function of (-A/m’/4zogzm-V(x))-in a rough sense. Along this line we get Theorem 1. Of course we
need hard and long calculations to obtain our result.
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