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If G(-) is a group, the power semigroup P(G) is the semigroup
of all nonempty subsets of G with respect to the operation defined by
AB={ab:ac A, be B} for all A, Be (G). The author and Shafer [5]
obtained the group of units of P(G), and Putcha [4] studied the
greatest semilattice decomposition of P(G) of a finite group G, but
we know little about archimedean components of P(G) of an infinite
group G.

Let Z be the group of integers under addition and Z, the sub-
semigroup of positive integers. The operation in (Z) is denoted by
X+Y={x+y:2eX,yeY}). For XeP(Z) and meZ,, we let mX
=X+4+-.-4+X and [a,bl={zeZ:a<z<b} if a,beZ with a<b. For

undefined terminology and basic information on commutative semi-
groups, the reader should refer to [1], [3].

Let P*(Z) denote the subsemigroup of P(Z) consisting of all finite
nonempty subsets of Z. If X e P*(Z), the archimedean component
of P(Z) containing X coincides with that of P*(Z) containing X. Let
JA{0,1} denote the archimedean component of P(Z) containing the
element {0,1}. The purpose of this paper is to investigate the struc-
ture of {0, 1}.

Let X={x,, x,, - - -, 2;} € P*(Z) where 2, <x,<---<x,. We define
min X=x,, max X=x,, id X)=z,—z,, fdX)=2,—2,_,, and md (X)
=max {X,— Xy, -+, L —Ty—,}. Note md(X)=1 unless X is a singleton.
If md (X)=1, i.e. X=[x,, z.], then X is called consecutive. If id(X)
=fd (X)=1, X is called semi-consecutive. The following is a main
theorem in this paper.

Theorem 1. Let X e P(Z). The following are equivalent :

1.1) Xeo,1}.

(1.2) nX={0,1}+Y for some neZ, and some Y € P(Z).

1.8) nX=m{0,1}+b for some n,meZ, and some b c Z.

1.4) X is semi-consecutive.

1.5) nX is consecutive for some neZ,.

Proof. (1.1)—(1.2) is obvious by archimedeaness.

1.2)-»1.4). Iif X={x,,, ---, 2}, min (nX)=nx, and the second
element of nX is (n—1)x,+2,. This implies id (nX)=id (X). Similarly
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fd (nX)=1£d (X). Since {0,1}4+Y is semi-consecutive, we have id (X)
=fd (X)=1.

(1.4)—(1.5). First the following lemma is obvious:

Lemma 1.6. Let V,W e P*(Z) and assume la, b]NV£¢p. If V
W, then md ([a, bINW)<md ([a, b]N V).

To prove “(1.4)—(1.5)” it suffices to prove the following by induc-
tion on .

Lemma 1.7. Let n=md(X). If X is semi-consecutive, then
md (IX)<n—14+1 for each l with 1<I<n.

If I=1, it is obvious. Assume [>1 and Lemma 1.7 holds for I.
Let X={0,1,2,, - - -, T(_y, 21}, 0<L< 2, <+ - - <z <z and 2, —x,_,=1,
and let (4+1)X=D,UD, where D,=][0, lz,+11N({I+1X, D, =[lz,,
I+ Dz, JN(1I+1)X. Now IX+{0,1}cD, and md (X +{0, 1) <n—Isince
md (IX)<n—1+1 by induction hypothesis. By Lemma 1.6 we have

md (D)<md (IX+{0,1H<n—1.
Next we want to show md (D,)<n—1. The subset IX contains a con-
secutive subset C=[lx,_,, lx,1={c, ¢\, - - -, ¢;} Where

co=lay 1, -, =—Dx_ +ixy, - -, e, =1x,.

Let K=[lz,, (+1)2,] and C,={¢,}, C,=le,_;, ¢,], i=1, ---,1-1, C,=C.
By inductionon¢, md (KN (C;+X)=md(KN(C,_,+X)—1,i=1, ---, L.
Since md (C;+X)=n, md (KN (C+X))=n—I1. By Lemma 1.6

md (D,)<md(KN(C+X)=n—1
because C+X c(l+1)X. Combining md (D,)<n—1with md(D,)<n—I,
we have md ((I4+1)X)<n—I. Hence Lemma 1.7 holds for all ! with
1<l<n. In particular, let I=n in Lemma 1.7, then md nX)<1.
Since nX is not a singleton, md (nX)=1.

(1.5)—>(1.3). Since nX is consecutive, there is b e Z such that
nX —b=[0, m]=m{0, 1} for some me Z,.

(1.3)—(1.1). Straightforward.

By Theorem 1, {0,1}+Y e {0, 1} for all Y € P*(Z), so that {0, 1}
is an ideal of P*(Z). By using the results of [2] and [6] we can
describe the structure of ({0, 1}.

(2) 0,1} is homomorphic onto the group Z wunder h:X—
min (X).

B) Let X,Y e J{0,1}. Then m{0,1}+X=n{0,1}+Y for some
m,n €z, if and only if min (X)=min (Y).

Let JA,={X e 4{0,1}: h(X)=2}. Then A0, 1}= UZ A,, in partic-

ze

ular (4, is a subsemigroup. Define a partial order < on each ./, as
follows :

X,Ye,, X<Y iff X=m{0,1}+Y for some m ¢ Z’, =Z, U{0}.

@) J.(X) forms a tree for each zeZ, and A(<) is order-
isomorphic onto A (<) for every z ¢ Z under X—X+z.
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Theorem 5. J{0,1} is isomorphic to the direct product of the
idempotent-free power joined semigroup A, and the group Z.

Every element X of _7{0,1} has the form X =LLJX“ =1, where
i=1

each X, is consecutive, | X,[*>2, |X,|>2 andif I>1, X,NX,=¢ (I+));
x<y forall x e X,, ye X, with i<j. Let Xe 4{0,1}. Then {0,1}| X
in {0, 1} if and only if (i) | X,|>3 and |X,|>8, and (i) if [>2,|X,;|>2
for all ¢ with i=£1, 7-41.

Theorem 6. J, consists of {0, 1}, {0,1,2}, {0,1,2,3} and {0,1}UY
U{t—1,} where i>4 and Y is any subset of [2,1—2}, Y may be empty.
If X is not consecutive, n{0,1}+ X is consecutive for some n e Z, where
the least n is (md (X))—1. The homomorphism h,: A,—Z, defined
by h.(X)=max (X) is the greatest cancellative homomorphism of _,.

Theorem 7. Let C be the set of all consecutive elements of
J{0,1}. Then Cis a subsemigroup of A{0, 1}, and Cis also the greatest
cancellative homomorphic image of A{0,1}, that is, C=A{0,1}/p
where p, is defined by Xp,Y iff max (X)=max (Y). Cis a cancellative
idempotent-free archimedean semigroup and C is isomorphic to the
direct product of Z, and Z.
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* |X;| denotes the number of elements of Xj.



