106. Invariance of the Plurigenera of Algebraic Varieties under Minimal Model Conjectures

By Noboru NAKAYAMA

Department of Mathematics, University of Tokyo (Communicated by Kunihiko KODAIRA, M. J. A., Dec. 12, 1984)

The purpose of this paper is to outline our recent results (see Theorems 1, 2 in § 3) on the behavior of plurigenera under projective deformation, provided that the minimal model conjectures (see § 1) are true. Here all the varieties are defined over the field of complex numbers. Details will be published elsewhere.

§1. Let X be a complete algebraic variety. A divisor D on X is called *nef*, if $D \cdot C \ge 0$ for any curve C on X. The *numerical Kodaira* dimension for a nef Cartier divisor D is defined by

 $\nu(D) := \kappa_{num}(D) := \max \{ d \mid D^d \not\cong 0 \}.$

If $\kappa(D) = \nu(D)$, D is called good. If $\kappa(D) = \dim X$ or $\nu(D) = \dim X$, then $\kappa(D) = \nu(D) = \dim X$. Such a D is called *big*.

For a normal variety X, K_x denotes the canonical divisor class of X and ω_x denotes the dualizing sheaf of X. For a Weil divisor D, if mD is Cartier for some integer m, then D is called **Q**-Cartier. If K_x is **Q**-Cartier, then X is called a **Q**-Gorenstein variety. If any Weil divisors are **Q**-Cartier, X is called **Q**-factorial. For a **Q**-Gorenstein variety X, the smallest positive integer r such that rK_x is Cartier is called the index of X, denoted by index (X). Let X be a normal **Q**-Gorenstein variety. For some (any) resolution $d: Y \rightarrow X$, if $K_x = d^*K_x + \sum a_i E_i$, where $\sum E_i$ is a normal crossing d-exceptional divisor, then the singularity of X is called terminal, canonical or log-terminal according as $a_i > 0$, $a_i \ge 0$ or $a_i > -1$, for all i, (see [2] and [5]).

Let X be a normal projective variety with only canonical singularities. For an extremal ray R on X, there exists a morphism $\operatorname{cont}_R: X \to V$ called a contraction of R. For definitions and details, refer to Kawamata [2]. The type of $\operatorname{cont}_R: X \to V$ is one of the following cases:

- (i) dim $X > \dim V$ and cont_R has connected fibers.
- (ii) cont_{R} is a birational morphism not isomorphic in codimension 1.

(iii) cont_R is a birational morphism isomorphic in codimension 1. In the case (i), a general fiber F of the cont_R is a Q-Fano variety, i.e., $-K_F$ is an ample Q-Cartier divisor. In particular, $\kappa(X) = -\infty$. In the case (ii), if X has only Q-factorial terminal singularities, then the exceptional locus of cont_R is a prime divisor and V has also only Q-factorial terminal singularities. In this case, the contraction is called a good contraction. In the case (iii), V has only rational singularities. However, it is not Q-Gorenstein any more. This contraction is called a bad contraction.

If X is a normal projective variety with only canonical singularities whose canonical divisor K_x is nef, then X is called a *minimal model*. There are some conjectures.

Minimal Model Conjecture. For a given nonsingular projective variety X_0 , there exists a minimal model X_{\min} birationally equivalent to X_0 , or a **Q**-factorial projective variety X with only terminal singularities such that X is birationally equivalent to X_0 and X has an extremal ray whose type is (i).

Conjecture M_1 : Let X be a projective variety with only Q-factorial terminal singularities and let $f: X \rightarrow Z$ be a bad contraction. Then there exist a Q-factorial projective variety X^+ with only terminal singularities and a birational morphism $f^+: X^+ \rightarrow Z$ such that f^+ is isomorphic in codimension 1 and K_{X^+} is f^+ -ample.

The birational mapping $X \cdots \rightarrow X^+$ is called an *elementary trans*formation or a flip in short.

Conjecture M_2 : After a finite number of steps of flips, we have an extremal ray of type (i) or (ii).

If M_1 and M_2 are true, then for a given surjective morphism $f: X_0 \rightarrow Z$ from a nonsingular projective variety X_0 onto a projective variety Z, there exists a Q-factorial projective variety X over Z with only terminal singularities such that either K_x is relatively nef, or X has a relative extremal ray of type (i).

Given a minimal model X, a theorem of Kawamata [3] asserts the following.

If $\kappa(K_x) = \nu(K_x)$, i.e., K_x is nef and good, then K_x is semi-ample. Thus he proposes the Goodness Conjecture:

If X is a minimal model, then K_x is good.

§2. Lemma 1. Let X be a normal variety with only log-terminal singularities and X_0 an effective Cartier divisor on X. Letting $X_0 = \sum a_i D_i$ be the irreducible decomposition, we set $D = \sum_{(a_i=1)} D_i$, which is a reduced Weil divisor on X. The normalization of D is denoted by $\sigma: X_1 \rightarrow D \subset X_0$. Then, for each integer $m \ge 1$, there exists a natural homomorphism

 $\psi_m: \sigma_* \mathcal{O}_{X_1}(mK_{X_1}) \longrightarrow \mathcal{O}_X(mK_X + mK_0) \otimes \mathcal{O}_{X_0}$

which is an isomorphism at the generic points of D. Especially, we have an injection

 $H^{0}(X_{1}, \mathcal{O}_{X_{1}}(mK_{X_{1}})) \longrightarrow H^{0}(X_{0}, \mathcal{O}_{X}(mK_{X}+mX_{0}) \otimes \mathcal{O}_{X_{0}}).$

No. 10]

Lemma 2. Let Z be a projective variety with only canonical singularities, C a nonsingular projective curve and let $g: Z \rightarrow C$ be a proper surjective morphism with connected fibers. If K_z is g-nef and K_{z_i} is semi-ample where Z_i is the general (or generic) fiber, then K_z is g-semi-ample.

Lemma 3. Let X be a quasi-projective variety with only logterminal singularities, S a quasi-projective variety and let $f: X \rightarrow S$ be a proper surjective morphism. If K_x is f-semi-ample, then for $i \ge 0$ and $\nu \ge 1$, $R^i f_* \mathcal{O}_X(\nu K_X)$ is torsion free.

§3. From the above lemmas, we can prove the following

Theorem 1. Let $f: X \rightarrow S$ be a smooth proper morphism between quasi-projective varieties. Then every m-genus

$$P_m(X_t) = h^0(X_t, \mathcal{O}_{X_t}(mK_{X_t}))$$

is independent of t, where $X_i = f^{-1}(t)$, if the Conjectures M_1, M_2 for $(\dim X_i + 1)$ -dimensional varieties and the Goodness Conjecture for $(\dim X_i)$ -dimensional varieties are true.

Theorem 2. Let $f: X \to C$ be a proper surjective morphism from a nonsingular projective variety X onto a nonsingular projective curve C. Then for each $t \in C$ and a general fiber $X_{\xi} = f^{-1}(\xi), \xi \in C$,

$$\sum_{i=1}^{p} P_m(\Gamma_i) \leq P_m(X_{\xi}) = \operatorname{rank} f_* \mathcal{O}_X(mK_X), \quad \text{for } m \geq 1,$$

where the Γ_i are irreducible components of $X_i = f^{-1}(t)$, if we assume that the Conjectures M_1 , M_2 for $(\dim X)$ -dimensional varieties and the Goodness Conjecture for $(\dim X_i)$ -dimensional varieties are true.

By a result of Tsunoda [7] that solves the minimal model conjecture for fiber spaces of 3-folds, we obtain the following:

Theorem 3. Let $f: X \to C$ be a proper surjective morphism with connected fibers from a 3-dimensional nonsingular projective variety X onto a nonsingular projective curve C. Then for each $t \in C$ and a general fiber $X_{\xi} = f^{-1}(\xi), \xi \in C$,

$$\sum_{i=1}^{p} P_{m}(\Gamma_{i}) \leq P_{m}(X_{\xi}) = \operatorname{rank} f_{*} \mathcal{O}_{X}(mK_{X}), \quad for \ m \geq 1,$$

where the Γ_i are irreducible components of $X_i = f^{-1}(t)$.

References

- S. Iitaka: Deformation of compact complex surfaces, II. J. Math. Soc. Japan, 22, 247-261 (1970).
- [2] Y. Kawamata: The cone of curves of algebraic varieties. Ann. of Math., 199, 603-633 (1984).
- [3] ——: Pluricanonical systems on minimal algebraic varieties (preprint).
- [4] J. Kollár: Higher direct images of dualizing sheaves (preprint).
- [5] M. Reid: Minimal models of canonical 3-folds. Algebraic Varieties and Analytic Varieties (ed. by S. Iitaka). Advanced Studies in Pure Math., 1, 131-180 (1983).

N. NAKAYAMA

- [6] M. Reid: Projective morphism according to Kawamata. Warwick Univ. (1983).
- [7] S. Tsunoda: Degenerations of minimal surfaces with nonnegative Kodaira dimension. Symposium on Algebraic Geometry, Kinosaki (1981), (1983) (in Japanese).