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In [7], we have shown that the Fabry-type gap theorems can be
most neatly handled by the aid of’ linear differential equations of
infinite order, thus realizing an ideal of Ehrenpreis [3]. Although
the classical gap theorems refer to holomorphic functions, it is evident
that they are. closely related to the analysis of Fourier series on a real
domain. The relation is most obvious in the. one-dimensional case"

Let f+(z) (resp., f_(z)) denote n>=oCn exp (ianZ) (resp., En<O Cn
exp (iaz)) (c e C, an R and i= /-1) and suppose that f+(z) (resp.,

f_(z)) determines a holomorphic unction on {z e C; Imz0} (resp.,
{z e C; Im z<0}). Suppose urther that the sequence a is sufficiently
lacunary so that Theorem 1 o [7] is applicable to them. Let f(x)
denote the hyperfunction determined by the pair of holomorphic unc-
tions f+(z) and f_(z), and suppose that f(x) vanishes near x=0. This
means, by the definition, that there exists a holomorphic unction F(z)
defined on {z e C; either Imz:/:0 or IRezl<c (c0)} which coincides
with f+_(z)on {z e C; __+Im z)0}, respectively. Then the gap theorem
or holomorphic unctions entails that both f+(z) and f_(z) are holo-
morphic in a neighborhood oi the real axis R, and hence their differ-
ence f(x) is analytic on R. Since f(x) vanishes near x--0, this implies
that f(x) is identically zero.

In the higher dimensional case, however, such a straightforward
connection cannot be observed immediately because o the complexity
o the notion of the vanishing o a hyperunction it requires a co-
homological language. (See [4], Chap. 1, 2, or example.) Still,
this trouble due to the higher dimensionality of the problem is only a
technical matter, as is usually the case in dealing with hyperunctions
we can obtain the same result also or the higher dimensional case.
This is what we want to report here.

In what ollows, or a sequence a(1) (1 N={0, 1, 2,...}) o m-
dimensional real vectors, we let a(n) (]--1,..., m; n e N) denote its
]-th reduced sequence in the sense of [7], Definition 1. We also denote
,jl la(1)l by la(1) I, where a(1) denotes the ]-th component o a(l).

Theorem. Let a(1) (1 e N) be a sequence of m-dimensional real
vectors such that its ]-th reduced sequence aj(n) satisfies the following
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two conditions for some constant c 0"
( 1 ) lira n/a(n) 0 (]= 1, ..., m)
( 2 ) la(n)--a(n’)lc ]n--n’l (]=1, ..., m; n, n’ e N).
Let c(1) (1 N)be a sequence of complex numbers which satisfies the
following condition:
( 3 ) For each 0 there exists a constant C for which

c(1)]=C exp (e la(l)I)
holds for every in N.

Let f(x) (x e RTM) denote the hyperfunction L0c(/)exp (ia(1), x).
Suppose that f(x) vanishes on an open neighborhood of the origin of
R. Then f(x) vanishes identically.

Proof. We first note that condition (3) guarantees that the
Fourier series -::0 c(l) exp (i a(1), x) is a well-defined hyperfunc-
tion. (See Proposition 2.4.4 of [4], Chap. 2, for example.) As in [7],
let us consider an infinite product P(3/3xj) of differential operators
given by

(3/3x,) (1 / (3/3x,)2
n:0 (a(n)) )"

We know that conditions (1) and (2) guarantee that P(3/x)(]=1,
.., m)is a well-defined linear differential operator o infinite order.

Further, the hyperunction f(x) solves the following system /on R:

" P(3/3x)f(x) O, ]= 1, ..., m.
Using an invertibility theorem for linear differential operators o
infinite order ([2], Theorem 1. See also [6] and [1]), we find Ch (),
the characteristic set o (in the sense of [8]), is

{(z, ) e C’ C T*C; (]= 1, ..., m) is pure imaginary}.
Hence the boundary of 9{(x, /-1)e T*C, ,xt} is micro-

hyperbolic with respect to / or any t 0. Hence, by using Theorem
.5.1.2 of [5] on the propagation o analyticity or solutions o micro-
hyperbolic systems, we find that the hyperfunction f(x), which is zero,
and hence analytic, near the origin, is analytic all over R. Since it

is zero near the origin, it identically vanishes. Q.E.D.
Remark. Suppose the same conditions on a(1) and c(1) as in the

theorem. I we suppose that f(x) is analytic near the origin, instead
o supposing that f(x) is zero near the origin, then, by the same
reasoning as above, we find that f(x) is analytic all over R. This
act might be more akin to the classical gap theorems in its nature.
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