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1. Introduction. Let xz=(x,x,, ---,x,) be a vector in R” and D
a region contained in R*. Let f,(x)(1<i<n) be real-valued nonlinear
functions defined on D and f(x)=(f,(x), f.(%), - - -, f.(x)) an n-dimen-
sional vector-valued function. Then we shall consider a system of
nonlinear equations
1.1 z=f(2),
whose solution is Z. Denote by ||z| and ||A| the l.-norm and the cor-
responding matrix norm, respectively. That is,

n
le||=max |z, and |[A|=max 3 |a,l,
1<ign 1<i<n j=1

where A=(a,,) is an n X n matrix.

In generalizing the Aitken 6*-process in one dimension to the case
of n-dimensions, Henrici [1, p. 116] has considered the following for-
mula, which is called the Aitken-Steffensen formula:

1.2) Y®© =g —AX O (L X @)1 4@,

Furthermore, he has conjectured the following: We may hope that
y* defined by (1.2) is closer to Z than 2™, provided that the matrices
A4X*® and £2X® are invertible. But he has not given mathematical
certification to such a conjecture.

In [2], we have studied the above Aitken-Steffensen formula and
shown [2, Theorem 2].

The purpose of this paper is to show Theorem 1 by considering a
method of iteration, often called the Steffensen iteration method.
Theorem 1 is an improvement on the result of [2, Theorem 2].

2. Statement of results. Define f“(x)e R" ({=0,1,2, ---) by

fO@)=x,

SO@)=f(f (@) =12, -..).
Put

dOw —g® _ 7
AP = fO(g®)—7 for i=1,2, ...
Then an nXn matrix D(x®) ig defined as
D(@®)=(d®®, g0, ... de-be),
Throughout this paper, we shall assume the following five con-
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ditions (A.1)-(A.5) which are analogous to those of [2].

(A1) fi(x) A1<i<n) are two times continuously differentiable
on D.

(A.2) There exists a point Z € D satisfying (1.1).

(A.3) ||J(®)|I<1, where J(x)=(0f(x)/ox,) 1<, j<n).

(A.4) The vectors do®, g&®» ... d®-to k=0,1,2, .-,
are linearly independent.

(A.5) inf {|det D(x®)|/||d®®|"}>0.

Now, we consider Steffensen’s iteration method
2.1) 2EHD = p® _ AX (2O L X (x®)) ' dae(x®),
where an n-dimensional vector dxz(x), and nXn matrices 4X(x) and
A X(x) are given by

Az(x)=f (@) — =,
AX@) =P @)—=x, - -, f™(@)— f" " (x))
and

LFX@)=(fP@)—-2fO@)+x, -, fO @) =2f @)+ ().

In this paper, we show the following

Theorem 1. Under the conditions (A.1)-(A.5), there exists a
constant M such that an estimate of the form

[®D —z|<M||x®—Z|}
holds, provided that the x® generated by (2.1) are sufficiently close
to the solution % of (1.1).

For the proof of Theorem 1, we need the following four lemmas:

Lemma 1 ([2, Lemma 1]). Let A and C be nxn matrices and as-
sume that A is invertible, with |A-'|<K,. If|A—C|<K,and KK,
<1, then C is also invertible, and |C-'|<K,/Q—K,K,).

Lemma 2. Under the conditions (A.1)-(A.5), there exists a con-
stant L, such that the inequality
2.2) [ (D@EEN <L, | d2 |~
holds for x® sufficiently close to .

Lemma 3. Under the conditions (A.1)-(A.5), mXn matrices
AX(x®) and 22X (x®) are invertible, and theve exist constants L, and
L, such that the inequalities
2.3) 14X (@®)) < Ly || AP~
2.4) (L X(x®)) M| < Lgl|d®™ |7
hold for x® sufficiently close to %.

Lemma 4 ([2, Lemma 5]). Let an nXn matriz A be invertible.
Let U and V be nxXm matrices such as m<n. Then A+UV* is in-
vertible if and only if I+ V*A-'U is invertible, and then

A+ UVH) '=A1— AU+ V*A-'U)'V*A-,
where V* is the transposed matrix of V.
Lemmas 1 and 2 are used in proving Lemma 3. Since the proofs
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of the inequalities (2.2)-(2.4) are similar to those of Lemmas 2—4 in
[2], respectively, they will not be given here. Lemma 4 may be used
for determining (£X(x®))-!, and is called the Sherman-Morrison-
Woodbury formula [3, p. 50].

Remark 1. By the definition, we have
2.5) LX(x®)=J (@) —DAX(x®)+ Y (x™),
where Y (xz®) is an nxXn matrix. By (A.1)-(A.3), we may choose a
constant L, such that, for 2® sufficiently close to z,
(2.6) [ Y (@®) || < Ls || P
Here we note that the inequality (2.4) holds with L;=L,/L, by choosing
a constant L, so as to satisfy
2.7 1—||J(®)||— L,Ls || d*" || > L,>0.

3. The proof of Theorem 1. We shall prove Theorem 1. As
may be seen by Remark 1 in § 2, we also have

3.1) dz(x®)=(J (@) —Dd*"® + &™),
where £(x™®) is an n-dimensional vector and
(3.2) 8@ || < Le|| AP P,

a constant L, being suitably chosen.

We observe that, from (2.5), by Lemma 3 and (A.3), 4X(x®)+
J (@) —D-'Y(x®) is invertible, while we have shown in Lemma 3 that
4X(x®) is also invertible. Then, we may apply Lemma 4 for m=n
to AX (™) 4+ (J(@)—D)'Y (x®) and obtain

(LX(x®) ' ={(4X (@®) ' —dX @@ '@ —-D
3.3) [+ Y @®)dX (@) @) -1
Y (@®)(dX (x®)-}J (@ -1

Substituting (3.1) and (3.3) into (2.1), it yields

6.0 20— =p(®)+ @),

where

.5) p(a®)=J @) - I+Y(@®)(4X@®)™’
-(J@)—D1"'Y (2®)(4X (@®))~'d™,

(3.6) q@®)=—AX(@®)(LX (™)) 'E(@x®).

Now, as for p(x®), we first obtain an estimate

3.7 o) | < L, Ls|| A |,

from (3.5), by (2.3), (2.6) and (2.7). Since ||D(z™®)| <> 72 [|d“" ||, we
have ||D(x®)|| < G ezt MY||d®® ||, by using the fact that ||[d“*"P| <
M|d®®| (0<M<1) for ¢=0,1,2, ---, so that

3.8 [ 4X (@) | <L, || d*P ||

holds for a constant L, chosen suitably. Hence, as for g(x™), we next
obtain an estimate

3.9 |q(@®)|| < LsLoL, || a9 |,

from (3.6), by (2.4), (3.2) and (3.8). Consequently, (3.4), together with

(8.7) and (3.9), shows that Theorem 1 holds with M =L(L,+ L,L,), as
desired.
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