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§0. Introduction. Consider a gauge field in the eight-dimen-
sional space satisfying
(1) 74 Vo J= Q) 2epuglV s Vo 1,

Ve Vo l=(=1/2)e,4lV ., V.1,

7,., V., 1=0, (z,v=0,1,2,3)
where (Y, 2)= o, V1> Y2r Ys» 20» 21, 25, 23) € C°, 4, . etc. are covariant deriva-
tives, and e,,.; is the totally anti-symmetric tensor such that ¢, ,.,=1.

Set x=(y+2)/2, w=(y—=2)/2. E. Witten [1] pointed out that (1)
implies the second-order Yang-Mills equations
(2) Vs Vs V3, 11=0 »=0,1,2,3)
on the diagonal subspace 4={(y,2)|w=0}, and further, that a gauge
field on 4 satisfies (2) if and only if it can be extended to a neighbor-
hood of 4 consistently to (1) mod (w,, w,, w,, w,)>. Here (w,, w,, w,, W)
denotes the square of the ideal generated by w,, w,, w,, w,.

In this paper, we rewrite (1) in the language of Sato’s soliton
theory [2] and investigate the structure of the solution space of (1) on
the analogy of Takasaki’s work ([3],[4]): we solve an initial-value
problem of differential equations with respect to functions with value
in an infinite-dimensional Grassmann manifold. (See Theorem 2.)

In our case, there appear a pair of spectral parameters 1, 4,. The
main difference from the case of one spectral parameter is that the
initial data must satisfy a system of differential equations if the
problem is solvable. (See Proposition 4 and ef. [3].)

§1. Linearization. Set p=y,+ W, &i=Y,— W 7.=2,+12;, =2,
— 123 T1=Yo— W1, Ci=Y,+1Y,, To=2,—12,, and C,=2,+12,. Then, intro-
ducing parameters 4,, 1,, we can rewrite (1) as follows : for any 2,, 1, € C,
(3) [=aF, +V, 4V +V,1=0, [(—4F, +Ve, Ve +V;1=0,

=2V, +Vey =2V, +V I=[=2F, +V¢, 2V +V,;]1=0,

AV +V,, =2V, +V 1=V, +V,, 3V +V;]1=0.
Throughout this paper we discuss in the category of formal power
series, so that V, =9, +A4,, A, egl(n, Clly, ¢, - - -, T1D) ete.

Now we “fix” the gauge, namely, restrict the freedom of gauge
sothat A, =4, =A, =A, =0. Then (3) reads
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3 [—=40, 4V, 20,+V,1=0, [—20,,+V,, 20,,+V,;]1=0,
[——218,71"'-‘751, —226724—7(2]:[—218,/1‘}‘731, 22652-1'-17%]:0,
(20, +V;, —20,+V =20, +V,, A0, +V,;]1=0.
We will investigate the structure of the solution space of (3’). The
system of eqs. (3’) is nothing but the integrability condition for the
linear equations
(4) (=20, +0,+ A )w@D=0, (A, +d,+ A wD=0,
(—29,,+ 9, + A4 )w)=0, (A0¢,+0,,+ A4, )w()=0.

Proposition 1. A;, A;, A, A, egln, Clly, ---, 1) are solu-
tions of (3) if and only if there exists a solution w(D)=72; ;50 WA 7’
of (4) such that w,,=1, namely, w,; € gl (n, Clly,, - - -, 1) which satisfy
Wo,o=1, w;;=01f 1<0 or <0, and
(4) _aylwi+l,j+(a€l+Afl)wi]‘=0y aclwi+l,j+(aﬁl"‘l_Aﬁl)wij:O’

—0, W45+ @, +ADw;; =0, 0e, Wi, 5.1+ @,+ A, )w,; =0
for any 1,5 € Z.
When i=j=0, (4') reads
(5) —0, Wi, +Ag =0, 0, w0+ A4, =0,
—0,,wo+A4,=0, 0, w1+ 4,,=0.
Therefore, to solve the eqs. (8'), it is sufficient to solve the equations
4" ——avylwi+l,j +azlwu+(ahw1,o)ww=0’
aclwu Wi aﬁlwtj - (aclwl,o)wzj =0,
—aﬂzwi,j+l+a[2wij+(aqzwo,l)wijzo’
0, Wi, 5117+ 07,W5~+ (0, W0, YW ;=0 for any 4,7 € Z.
More precisely, we have

Proposition 2. The relations (5) give a one-to-one correspondence
between

i) solutions A of (3")
and

ii) equivalence classes of the solutions w(1) of (4”") modulo right-
multiplication by v(2) such that (—29, + 09;)v(Q) = @3, +3,)vQ)
=(—2,0,,+0,)v(2) = (29,40, )v(A) =0, v,,=1, v,;=0 if <0, or 7<0, v,;
€ gl (n, C[[ma ttty zz]]).

§2. Motions on an infinite.dimensional Grassmann manifold.
Let I={(i,7) € ZxZ|i<0 or j<0} and define a matrix of infinite size
E=(gELDes*2 by the product of matrices (wi, ;- )E&)eT” and
(Wimi,s-)ERED 1€, DY 88 =2, mer W g,5-1Wo-i,n-1, Where w; are coef-
ficients of w1, i.e. w'=>, ;50 w47'2;7. Then we obtain &=45] if
1<<0 or <0, &1=0 if i<k or <I, and 4,6=¢C, (=1, 2) where

s O et 1yeTxE
A,= (650D &P ELT A= (G0 & PELD
— (gi+L . )el — (&I +1) @ )ET

Ci=(ErNEien Co=(&1"&Ber

Here 5. denotes the Kronecker’s delta. Furthermore, the converse is
true:
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Proposition 3. The above definition of & gives a one-to-one cor-
respondence between

i) w@egln, Clly, - -, GIDIATY 2511 such that w,,=1
and

i) E=EDEDET such that & € gl (n, Clly, - - -, 1D,
(6) =0t if 1<<0 or 7<0, T=01f i<k or j<lI,

AE=EC,, A£=EC, for some I X I-matrices C,, C,,

where the correspondence é—w is defined by w ;= —E&%) _,.

Therefore we can rewrite the equations (4”):

Theorem 1. Through the correspondence w<>£&, (4”) are equiv-
alent to
(7) (—.Alaﬂl—{'_azl)S:SAl’ (Alacl_l_aﬁl)g:SBl’

("'Azaﬂ2+ 8(2)$=$A2, (Azatz+a;72)§=$Bzy

where A,, A,, By, B, are I X I-matrices uniquely determined by & if they
exist.

To investigate the structure of the solution space of (7), we con-
sider an initial-value problem with respect to the subspace {,=7,=¢,
=7,=0. Unlike the case of self-dual Yang-Mills equations, we cannot
solve it for arbitrary data; the data for which it is solvable must
satisfy a system of differential equations. In fact, we have

Proposition 4. The system of eqs. (6) and (7) implies
(8) 0ay  *0a,500=0 for any 1>0, ay, - - -, a;=n,, Ly,

0p," ‘aﬁ,«f%zo for any 7>0, By, - - -, B,= 7 Cs

Conversely, for any initial datum satisfying (8) we can solve the
initial-value problem :

Theorem 2. For any

§O=(EVDEBETY, g0 e gl (n, Clly, &, 72, CID
satisfying (6) and (8), there exists a unique solution & to the initial-

value problem, i.e. &= (£)%1e%%, i e gl(n, Clly, - -+, LD satisfying
(6), (7), and &z, _y, ¢ —y.-0=E". The solution & has the following form :
g=E(Ew), where

§=exp (49, — 7140, +Lodd,, — 7:4:0: ),
i=(L.) Eo=Coeng, Eo=Engp.

In summary, by choosing the proper frame, the time evolutions
in the initial-value problem can be regarded as evolutions generated
by linear differential equations, and the solution space of (4”) is faith-
fully parametrized by the solution space of equations (8) in the sub-
space {,=7,={,=7,=0.

To solve the eqs. (8) is an open problem.

§3. Relation to the Yang-Mills fields.

Proposition 5. If gauge fieldsV,V satisfying (1) coincide as gauge
fields in the diagonal subspace 4, then V and V are gauge-equivalent.
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Thanks to Proposition 5, we can see that the trivial extension of
an (anti-) self-dual Yang-Mills field is the unique one up to gauge
equivalence. Therefore, we have

Proposition 6. The solutions of (7) which correspond to (anti-)
self-dual Yang-Mills fields on 4 are characterized by
0,,0¢,8:%:,=0 0,,0.8%,0=0).
All the (anti-) self-dual Yang-Mills fields can be obtained in this way.
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