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1. Let f(x) e K[x] be a monic irreducible polynomial of degree
n over a field K of characteristic 0. Several theoretical algorithms
for the determination of the Galois group Galy (f) of f(x) over K have
been developed by many authors (cf. van der Waerden [5], Zassenhaus
[7], Stauduhar [4]), but it is known that the practical determination
is difficult for large n. In [1] a technique for determining the set-
transitivity of the Galois group of a polynomial is described by Erbach,
Fischer and Mckay, and they prove that x"—1542499 has the Galois
group PSL(2,7). In [3] Jensen and Yui give a criterion characteriz-
ing f(x) with Galy (f)=D, (the dihedral group of prime degree p).

In this paper we give criteria characterizing f(x) which has as
Gal, (f) a group with some properties as a permutation group. In
particular, we give a formula giving the order of Gal (f).

2. We state several terminologies [6] concerning the permutation
group theory. Let G be a permutation group on £. We say that a
subset 4 of 2 is an orbit of G if (4)G=4 and G acts transitively on 4.
G is called t-transitive on 2 if for every two ordered t-tuples a4, - - -, «,
and B, - - -, B, of elements of 2 (with a,#«;, 8,58, for i=7) there exists
g € G with (a))g=8; =1, ---,t). If G is transitive on £ and if there
is a subset I' A <|T"|<|2)) of Q satisfying (INg=1I" or (NgNI=¢ for
all g € G, G is called an imprimitive group on 2 with a block I'.  (Then
|I"]||2] holds obviously.) We say G is primitive on 2 if G is transitive
but not imprimitive on 2. Obviously G is primitive if G is doubly

transitive. For s elements «y, - -+, a, € 2 we set G.,,....={9e€ G: (a)g
=ay, 1=1, - -+, s}, a subgroup of G.

3. From now on, we assume G=Gal, (f) and £2=the set of roots
of f(x). For independent variables X, - --, X,

n {(Cﬁ"ai)Xl'l‘(az—“;)Xz"‘ L +(an““;)Xn}

[C3TREEN an)#(af, ceyap) ERX e X2
is a non-zero polynomial in K[X,, - - ., X,] of degree n*(n"—1). Hence
there exist distinct non-zero rational integers a,, - - -, a, with

[T {aa,—aD)+ay(e,— )+ - - - +a,(a, — )} #0.
(a1yeemsan)#(af, oerap) €ERXeee X2

Hereafter we fix a,,a,, -+ -, a,. For each m (1<m=<n) we define
@(al,m ,,,,, am)(X)= l_[ (X—(alal+a20(2+ te +a/m0{m))~

(a1yeeyam)ERXere X2
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Then it is a polynomial in K[X] of degree n™ of which all roots are
distinct from one another.

Now there exist a natural number s and mappings 4, ¢1=0,1, - - -, )
from £ into the subsets of £, such that £ decomposes into exactly
(s+1) G.-orbits dy(a)={a}, 4i(a), ---, 4(ax) for each ac R satisfying
U()g=4,(c)g) forallee 2, 9ge G,i=0,1, -.-,5. Wecall 4, (0=i<s)
an orbital [2] of G. The number |4,(«)|, which is independent of « € 2,
is called the length |4;| of 4,. Then we have

Theorem 1. @, ,,,(X)=f(X) fi(X)- - - f(X) holds, where

FO=T1 1 X—(atap) O<i<s)

ac pedi(a)

is an irreducible polynomial in K[X] with deg f;/n=4,| ¢=0, ---,s).

4. Let 4, be an arbitrarily fixed orbital with ¢=1. Then there
exist a natural number r and mappings I',=I"{> (=0,1, - - -, r) from
T={(a,B): ae R, Be 4, (a)} into the subsets of 2, such that £ decom-
poses into exactly (r+1) G,,-orbits

FO(O(, .B)={Of}, ['1(05’ ﬁ)":{.@}) Fz(a, ‘8), Tty F,(O(, ‘3)

for each (e, p) € T satisfying (I";(a, B))g=1";((«)g, (B)g) for all («,B) e T,
9¢€G, 7=0,1,---,7. The number |I",(«, f)|, which is independent of
€ 2 and e 4,(a), is called the length |I'{"?| of I'{*».

For f,(X) (corresponding to 4,) we define

@ng,)az,as)(X)=rle—L JiX —ayl).

Then it is a divisor of @, ,, .,,(X) in K[X], and we get
Theorem 2. O{7,, .. .(X)=h(X)h,(X)- - -h,(X) holds, where
hj(X): n n H (X_(axa‘*‘azﬂ‘!‘asr)) 0=7<7)

a€Q pedi(a) rel j(a,p)
is an irreducible polynomial in KI[X] with deg h,/(n|d4,)=|{"|
G=0,1,.--,7).

Remark. In Theorems 1 and 2, s=1 holds if and only if G is
doubly transitive on 2, and moreover »=2 holds if and only if G is
triply transitive on Q.

5. We can continue arguments of Theorems 1,2, - - - similarly.
Hence by this method we can get |G| essentially because of the follow-
ing lemma (cf. [6, Theorem 3.2, Proposition 3.3]).

Lemma. If G,,.., ={1} holds for v elements 7, ---,7, in 2, we
have |G|=|()G|| (DG, |- - -|(T)G,,...,,_,| where |(T)G,.. | is the length
of the orbit of G, ..., , containing 7.

6. Let us suppose that » is not prime and d is a divisor of n with
1<d<mn. Assuming that ¢/(X,,---,X,) (=1, ---,d) are the elemen-
tary symmetric polynomials of X, ---, X, and that 2@ is the set of
d-element subsets of £, then for independent variables Y,, ..., Y,

[1 {;d: Yiplay, -+ -y @) —olas, - -+, 0(:1))}

=1
{az,eey agl#{af, -+ af} € Q@

e Th—1
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is a non-zero polynomial in K[Y,, ---,Y,] of degree (Z)((")—l)

Hence there exist rational integers b,, - - -, b, with

d
{3 o -+ @) —pded, -, )} 0.
(al,...l,;;};&(ai,...,a&; )

Hereafter we fix b, ---,b,. If we define
w(bx,---,ba)(X)z{n {X—(b1¢1(“1’ ttty ad)""‘ ce ‘,‘bdﬂod(a‘ly ct ity O(d))}y

A1yees g} €Q(Q)
then it is a polynomial in K[X] of degree (g) of which all roots are

distinct from one another, and we get
Theorem 3. ¥, ... ,,(X) has an irreducible factor of degree n/d
in K[X]1 if and only if G is an imprimitive group whose block-size is d.
In Theorem 3 if A(X) is an irreducible factor of ¥, ... ,,(X) of
degree n/d, then we may assume that G has n/d blocks 4,={a;,, - - -, .4}
(=1, ---,n/d) with Q=4,+- - -+ 4,,, satisfying

n/d
AX)= 'E[1 {X—(b1501(a11, Tty “w)'{“ v +bd§0d(“w Tty Q'id))}-

Let G be the permutation group on Q={4, ---,4,,} induced by G.
Then we have

Theorem 4. G=Gal, (1).
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