35. Galois Groups of Polynomials

By Mitsuo Yoshizawa

College of General Education, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1984)

1. Let $f(x) \in K[x]$ be a monic irreducible polynomial of degree n over a field K of characteristic 0. Several theoretical algorithms for the determination of the Galois group $\operatorname{Gal}_K(f)$ of f(x) over K have been developed by many authors (cf. van der Waerden [5], Zassenhaus [7], Stauduhar [4]), but it is known that the practical determination is difficult for large n. In [1] a technique for determining the settransitivity of the Galois group of a polynomial is described by Erbach, Fischer and Mckay, and they prove that $x^7-154x+99$ has the Galois group PSL(2,7). In [3] Jensen and Yui give a criterion characterizing f(x) with $\operatorname{Gal}_K(f) \cong D_p$ (the dihedral group of prime degree p).

In this paper we give criteria characterizing f(x) which has as $\operatorname{Gal}_{\kappa}(f)$ a group with some properties as a permutation group. In particular, we give a formula giving the order of $\operatorname{Gal}_{\kappa}(f)$.

- 2. We state several terminologies [6] concerning the permutation group theory. Let G be a permutation group on Ω . We say that a subset Δ of Ω is an *orbit* of G if $(\Delta)G=\Delta$ and G acts transitively on Δ . G is called t-transitive on Ω if for every two ordered t-tuples $\alpha_1, \dots, \alpha_t$ and β_1, \dots, β_t of elements of Ω (with $\alpha_i \neq \alpha_j$, $\beta_i \neq \beta_j$ for $i \neq j$) there exists $g \in G$ with $(\alpha_i)g=\beta_i$ $(i=1,\dots,t)$. If G is transitive on Ω and if there is a subset Γ $(1<|\Gamma|<|\Omega|)$ of Ω satisfying $(\Gamma)g=\Gamma$ or $(\Gamma)g\cap\Gamma=\phi$ for all $g\in G$, G is called an *imprimitive group* on Ω with a $block\ \Gamma$. (Then $|\Gamma|||\Omega|$ holds obviously.) We say G is primitive on Ω if G is transitive but not imprimitive on Ω . Obviously G is primitive if G is doubly transitive. For G elements G0, G1, G2, G3, G3, G4, G5, G5, G5, G5, G5, G6, G7, G8, G9, G9,
- 3. From now on, we assume $G = \operatorname{Gal}_K(f)$ and $\Omega =$ the set of roots of f(x). For independent variables X_1, \dots, X_n

$$\prod_{(\alpha_1,\dots,\alpha_n)\neq(\alpha_1',\dots,\alpha_n')\in\Omega\times\dots\times\Omega} \{(\alpha_1-\alpha_1')X_1+(\alpha_2-\alpha_2')X_2+\dots+(\alpha_n-\alpha_n')X_n\}$$

is a non-zero polynomial in $K[X_1, \dots, X_n]$ of degree $n^n(n^n-1)$. Hence there exist distinct non-zero rational integers a_1, \dots, a_n with

$$\prod_{(\alpha_1,\dots,\alpha_n)\neq(\alpha_1',\dots,\alpha_n')\in\Omega\times\dots\times\Omega} \{a_1(\alpha_1-\alpha_1')+a_2(\alpha_2-\alpha_2')+\dots+a_n(\alpha_n-\alpha_n')\}\neq 0.$$

Hereafter we fix a_1, a_2, \dots, a_n . For each m $(1 \le m \le n)$ we define $\Phi_{(a_1, a_2, \dots, a_m)}(X) = \prod_{(a_1, \dots, a_m) \in \mathcal{Q} \times \dots \times \mathcal{Q}} (X - (a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_m \alpha_m))$.

Then it is a polynomial in K[X] of degree n^m of which all roots are distinct from one another.

Now there exist a natural number s and mappings Δ_i $(i=0,1,\dots,s)$ from Ω into the subsets of Ω , such that Ω decomposes into exactly (s+1) G_{α} -orbits $\Delta_0(\alpha) = \{\alpha\}$, $\Delta_1(\alpha)$, \dots , $\Delta_s(\alpha)$ for each $\alpha \in \Omega$ satisfying $(\Delta_i(\alpha))g = \Delta_i((\alpha)g)$ for all $\alpha \in \Omega$, $g \in G$, $i=0,1,\dots,s$. We call Δ_i $(0 \le i \le s)$ an orbital [2] of G. The number $|\Delta_i(\alpha)|$, which is independent of $\alpha \in \Omega$, is called the length $|\Delta_i|$ of Δ_i . Then we have

Theorem 1.
$$\Phi_{(a_1,a_2)}(X) = f_0(X) f_1(X) \cdots f_s(X) \ holds, \ where$$

$$f_i(X) = \prod_{\alpha \in \mathcal{Q}} \prod_{\beta \in J_i(\alpha)} (X - (a_1\alpha + a_2\beta)) \qquad (0 \leq i \leq s)$$

is an irreducible polynomial in K[X] with $\deg f_i/n = |A_i|$ $(i = 0, \dots, s)$.

4. Let Δ_i be an arbitrarily fixed orbital with $i \ge 1$. Then there exist a natural number r and mappings $\Gamma_j = \Gamma_j^{(d_i)}$ $(j = 0, 1, \dots, r)$ from $T = \{(\alpha, \beta) : \alpha \in \Omega, \beta \in \Delta_i(\alpha)\}$ into the subsets of Ω , such that Ω decomposes into exactly (r+1) $G_{\alpha\beta}$ -orbits

$$\Gamma_0(\alpha,\beta) = \{\alpha\}, \quad \Gamma_1(\alpha,\beta) = \{\beta\}, \quad \Gamma_2(\alpha,\beta), \cdots, \Gamma_r(\alpha,\beta)$$
 for each $(\alpha,\beta) \in T$ satisfying $(\Gamma_j(\alpha,\beta))g = \Gamma_j((\alpha)g,(\beta)g)$ for all $(\alpha,\beta) \in T$, $g \in G, j = 0, 1, \cdots, r$. The number $|\Gamma_j(\alpha,\beta)|$, which is independent of $\alpha \in \Omega$ and $\beta \in \Delta_i(\alpha)$, is called the $length |\Gamma_j^{(d_i)}|$ of $\Gamma_j^{(d_i)}$.

For $f_i(X)$ (corresponding to Δ_i) we define

$$\Phi_{(a_1,a_2,a_3)}^{(f_i)}(X) = \prod_{\gamma \in \mathcal{Q}} f_i(X - a_3 \gamma).$$

Then it is a divisor of $\Phi_{(a_1,a_2,a_3)}(X)$ in K[X], and we get

Theorem 2.
$$\Phi_{(a_1,a_2,a_3)}^{(f_i)}(X) = h_0(X)h_1(X)\cdots h_r(X) \ holds, \ where$$

$$h_j(X) = \prod_{\alpha\in\Omega} \prod_{\beta\in\mathcal{A}_i(\alpha)} \prod_{\gamma\in\Gamma_j(\alpha,\beta)} (X - (a_1\alpha + a_2\beta + a_3\gamma)) \qquad (0 \leq j \leq r)$$

is an irreducible polynomial in K[X] with $\deg h_j/(n|\Delta_i|) = |\Gamma_j^{(d_i)}|$ $(j=0,1,\cdots,r)$.

Remark. In Theorems 1 and 2, s=1 holds if and only if G is doubly transitive on Ω , and moreover r=2 holds if and only if G is triply transitive on Ω .

5. We can continue arguments of Theorems 1, 2, \cdots similarly. Hence by this method we can get |G| essentially because of the following lemma (cf. [6, Theorem 3.2, Proposition 3.3]).

Lemma. If $G_{\tau_1\cdots\tau_v}=\{1\}$ holds for v elements $\varUpsilon_1,\cdots,\varUpsilon_v$ in \varOmega , we have $|G|=|(\varUpsilon_1)G||(\varUpsilon_2)G_{\tau_1}|\cdots|(\varUpsilon_v)G_{\tau_1\cdots\tau_{v-1}}|$ where $|(\varUpsilon_k)G_{\tau_1\cdots\tau_{k-1}}|$ is the length of the orbit of $G_{\tau_1\cdots\tau_{k-1}}$ containing \varUpsilon_k .

6. Let us suppose that n is not prime and d is a divisor of n with 1 < d < n. Assuming that $\varphi_i(X_1, \cdots, X_d)$ $(i=1, \cdots, d)$ are the elementary symmetric polynomials of X_1, \cdots, X_d and that $\Omega^{(d)}$ is the set of d-element subsets of Ω , then for independent variables Y_1, \cdots, Y_d

$$\prod_{\substack{\{\alpha_1,\dots,\alpha_d\}\neq\{\alpha_1',\dots,\alpha_d'\}\in\varOmega^{(d)}}} \left\{ \sum_{i=1}^d Y_i(\varphi_i(\alpha_1,\dots,\alpha_d') - \varphi_i(\alpha_1',\dots,\alpha_d')) \right\}$$

is a non-zero polynomial in $K[Y_1, \dots, Y_d]$ of degree $\binom{n}{d} \binom{n}{d} - 1$. Hence there exist rational integers b_1, \dots, b_d with

$$\prod_{\substack{\{\alpha_1,\cdots,\alpha_d\}\neq\{\alpha_1',\cdots,\alpha_d'\}\in\mathcal{Q}^{(d)}\}}} \left\{\sum_{i=1}^d b_i(\varphi_i(\alpha_1,\cdots,\alpha_d')-\varphi_i(\alpha_1',\cdots,\alpha_d'))\right\} \neq 0.$$
 Hereafter we fix b_1,\cdots,b_d . If we define

$$\Psi_{(b_1,\cdots,b_d)}(X) = \prod_{\{\alpha_1,\cdots,\alpha_d\}\in \mathcal{Q}(d)} \{X - (b_1\varphi_1(\alpha_1,\cdots,\alpha_d) + \cdots + b_d\varphi_d(\alpha_1,\cdots,\alpha_d))\},$$

 $\Psi_{(b_1,\dots,b_d)}(X) = \prod_{\{\alpha_1,\dots,\alpha_d\}\in\mathcal{Q}(d)} \{X - (b_1\varphi_1(\alpha_1,\dots,\alpha_d) + \dots + b_d\varphi_d(\alpha_1,\dots,\alpha_d))\},$ then it is a polynomial in K[X] of degree $\binom{n}{d}$ of which all roots are distinct from one another, and we get

Theorem 3. $\Psi_{(b_1,\dots,b_d)}(X)$ has an irreducible factor of degree n/din K[X] if and only if G is an imprimitive group whose block-size is d.

In Theorem 3 if $\lambda(X)$ is an irreducible factor of $\Psi_{(b_1,\dots,b_d)}(X)$ of degree n/d, then we may assume that G has n/d blocks $\Delta_i = \{\alpha_{i1}, \dots, \alpha_{id}\}$ $(i=1, \dots, n/d)$ with $\Omega = \Delta_1 + \dots + \Delta_{n/d}$ satisfying

$$\lambda(X) = \prod_{i=1}^{n/d} \{X - (b_1 \varphi_1(\alpha_{i1}, \dots, \alpha_{id}) + \dots + b_d \varphi_d(\alpha_{i1}, \dots, \alpha_{id}))\}.$$

Let \overline{G} be the permutation group on $\overline{\Omega} = \{\Delta_1, \dots, \Delta_{n/d}\}$ induced by G. Then we have

Theorem 4. $\overline{G} \cong \operatorname{Gal}_{\kappa}(\lambda)$.

References

- [1] D. W. Erbach, J. Fischer, and J. Mckay: Polynomials with PSL(2,7) as Galois group. J. Number Theory, 11, 69-75 (1979).
- [2] D. G. Higman: Intersection matrices for finite permutation groups. J. Algebra, 6, 22-42 (1967).
- [3] C. U. Jensen and N. Yui: Polynomials with D_p as a Galois group. J. Number Theory, 15, 347-374 (1982).
- [4] R. P. Stauduhar: The determination of Galois groups. Math. Comput., 27, 981-996 (1973).
- [5] B. van der Waerden: Modern Algebra. vol. 1, Unger, New York (1953).
- [6] H. Wielandt: Finite Permutation Groups. Academic Press, New York-London (1964).
- [7] H. Zassenhaus: On the group of an equation. Nachr. Akad. Gött. Math.-Phys., K1.II, 147-166 (1967).