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Let @,.,(x) be the B-spline defined by
+1
Qu@=/ph 3 (—w(f" j 1)(x—m,

then we take a polynomial spline function s(x) of the form;
n-1

() s(@)= > aQ,..(x/h—1), nh=1

i=—

with undetermined coefficients «;, i=—p, —p+1, -.-,n—1.

Various consistency relations have been obtained by many authors
([11-[5]). Here we are concerned with consistency relations at mesh
and mid points. If p=2, i.e., s is quadratic spline, the following
consistency relation is known:

(1/8)(3“1+63¢+31~1)=(1/2)(si+1/2+ 31*1/2)
where s,=s(ik) and s,,,,=s(C+1/2)k) (3.

In the present paper we shall generalize the above relation for
polynomial splines of dimensions 1 and 2.

Theorem 1. Let s be a polynomial spline of the form (x). Then
we have

¥ s+ s+ - - ePs,
=hl(d3k)3§21/2+ dik)sfzﬁr)s/z"' ceet ;@1S§Qp—1/2)
for k=0,1,...,p—1 and I=0,1, --.,p
where
P =Qm+1/2—1),  dP=QR(P—1).
Proof. Since Q,.,,(x)=0 for x<0 and x>p+1,

=0 for :+<—1 and i1 >p+1

d® =0 for i< —1 and i>p.
Hence, by substituting (x) into the desired relation, we have

“coefficient of «; of the left-hand side”

)

p *
= Z=:0 C%Q;&h(i-}- m—j)-_- Z ;531 20+1/2—m)Q§,’°+’1(i+m—y)

m=—co

ST QWP —mQBG+m+1/2— )

m=—co

by changing the index,
“coefficient of «; of the right-hand side”
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=5 dPQi+m+1/2—1)

= Z QU@ —m)QN(E+m~+1/2—7).

This completes the proof of this theorem.
As examples of the above relation, let s(x) be a quartic spline, then
(1/384)h*(s(®,+ 768K, 42308 4+ T68{F, 4 s{¥,)
A/24)(8143p 118,415+ 118 1548 50)s k
— (1/6)(Sz+3/z+ 33“1/2"331-1/2"‘3%3/2), k=
(1/2)(8443/2— Si+12— Si-12F Si-3p2)s k
(Si+3/2“—3si+1/2+381-—1/2—sz—s/z), k
These relations are useful for the investigation of the quartic
spline interpolation problem at mid points:
Siv1p=JS1+1/2 for given function f(x).
Similarly we have the consistency relation for doubly polynomial
splines.
Theorem 2. Let s(x,y) be a doubly polynomial spline function of
the form:
s(z, y)— Z a1 Qp @/ h—D)Q, (Y h—1).

j=-p
Then we have
hl+ m(c(k r)s(l m)+c(lc r)s(l ,m) + +c(k ”s%—zb)j+p)
—hk”(d(f )™ 8§ +1/2,j+1/2+do,1m)3§’i1r/)2 /+3/z+ +d§J 1,p— 181,+p Z1/2,5+p— 1/2)
l,m=0,1, ,p—1 and k,r=0,1,

where

l+m .
st = a‘;’; " _s(ih, jh)

S5 = 5 S 1/2)0, (G4 1/20)
e =QR,(p+1/2—0)QyH(p+1/2—7)
i =QR (p—DQT(p—1).
From above, we have the consistency relation for doubly quadratic
spline s(z, %) :
(1/64) {841,541+ 8041, 521 801,501+ 801,51
+6(8,41,5+ 85,41+ 81, 5-1+ 801, )+ 868, 5}
=(1/4)(si+1/2,j+1/2+si+!/2,j—1/2+si-—l/z,j+1/2+81-1/2,1—1/2)’
This relation is required for the investigation of the biquadratic spline
interpolation at mid points:
Sinipgse=Sinpsap  for given function f(z,y).
And we also have the relation which is useful for the construction of
the difference scheme for a boundary value problem du=f:
A/ D{S141,541FSi1,5-1FSio1, 541+ Sio1,51
+2(841,57F 81,5017 81,51+ 81-1,) — 128, 3}
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=1/ DR(AS; 100, 54127F ASi172,5-172485 172, 3412 ASi 172, 1-170)-
The discretization error of this nine-point difference scheme is
— @/ 2Dk () +ulP) + -
On the other hand, those of the central dlfference scheme and the
difference scheme associated with cubic spline collocation method are
A /12) w4+ ul)+ - - - and — (1 /12)R (ul? +uP)+ - - -, respectively.

l»l
In another paper we shall consider the apphcatlon of this scheme

to the numerical solution of the boundary value problem: du=f.
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