17. Formation of Singularities for Hamilton-Jacobi Equation. I

By Mikio TSUJI

Department of Mathematics, Kyoto Sangyo University (Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1983)

§ 1. Introduction. This note is concerned with the singularities of global solution of Hamilton-Jacobi equation in two space dimensions:

(1)
$$\frac{\partial u}{\partial t} + f\left(\frac{\partial u}{\partial x}\right) = 0$$
 in $\{t > 0, x \in \mathbb{R}^2\},$

(2) $u(0, x) = \varphi(x) \in C_0^{\infty}(\mathbb{R}^2),$

where $C_0^{\circ}(R^2)$ is a set of C° -functions whose supports are compact. In this note we assume that f is C° and uniformly convex. It's well known that, even for smooth initial data, the Cauchy problem (1) and (2) doesn't admit a smooth solution for all t. Therefore we consider a generalized solution of (1), (2) whose definition will be given in §2. The existence of global generalized solutions is already established by many authors. (See [1] and its references.)

For a single conservation law in one space dimension, a solution satisfying the entropy condition is piecewise smooth for any smooth initial data in $\mathscr{S} =$ {rapidly decreasing functions} except for a subset of the first category ([3]–[5] and [8]). T. Debeneix [2] treated certain systems of conservation law which is essentially equivalent to Hamilton-Jacobi equation (1) in \mathbb{R}^n ($n \leq 4$), and generalized the results of [8] to this case by the same method as [8].

One of the classical methods for solving first order non-linear equations is the characteristic one. Its weak point is that it's the local theory. The reason is due to the fact that a smooth mapping can't uniquely have the inverse at a point where its jacobian vanishes, i.e., that its inverse becomes many-valued there. Therefore the solution takes also many values in a neighborhood of critical points of a mapping H_i defined in §3. The aim of this note is to show how to choose up the reasonable value of its many values so that the solution is one-valued and continuous.

The author thanks Dr. A. Grigis for a number of helpful discussion on this problem during his stay at l'Ecole Polytechnique and l'Université de Paris-Sud.

§ 2. Generalized solutions. Let's put $p = (p_1, p_2) \in \mathbb{R}^2$, and write

$$f'(p) = \left(rac{\partial f}{\partial p_1}(p), rac{\partial f}{\partial p_2}(p)
ight) ext{ and } f''(p) = \left[rac{\partial^2 f}{\partial p_i \partial p_j}(p)
ight]_{1 < i, \ j < 2}.$$

In this note we assume that f(p) is uniformly convex, i.e., $f''(p) \ge C > 0$ where C is constant. We now define a generalized solution of (1) and (2).

Definition. A Lipschitz continuous function u(t, x) defined on $R^1 \times R^2$ is called a generalized solution of (1) and (2) if

i) u(t, x) satisfies (1) almost everywhere in $R^1 \times R^2$ and (2) on t=0,

ii) u(t, x) is semi-concave, i.e., there exists a constant k>0 such that (3) $u(t, x+y)+u(t, x-y)-2u(t, x) \le k|y|^2$

for any $x, y \in R^2$ and t > 0.

It's well known that the Cauchy problem (1) and (2) has a unique global solution with the above properties i) and ii) ([6], [1]).

§ 3. Construction of solutions. The characteristic lines corresponding to the Cauchy problem (1) and (2) are determined by following equations:

$$\dot{x}_i = \partial f / \partial p_i(p), \quad \dot{p}_i = 0 \quad (i=1,2)$$

with the initial conditions

 $x_i(0) = y_i$, $p_i(0) = \partial \varphi / \partial y_i(y)$ (i=1,2).

On the characteristic line, the value v(t, y) of the solution satisfies an equation

$$\dot{v} = -f(p) + \langle p, f'(p) \rangle, \quad v(0) = \varphi(y),$$

where $\langle p,q \rangle$ means a scalar product of vectors p and q. Solving these equations, we have

(4) $x = y + t f'(\varphi'(y)) \stackrel{\text{def}}{=} H_{\iota}(y),$

(5)
$$v = \varphi(y) + t \{-f(\varphi'(y)) + \langle \varphi'(y), f'(\varphi'(y)) \rangle \}.$$

Then H_i is a smooth mapping from R_y^2 to R_x^2 , and its jacobian is given by

$$\partial x/\partial y(t, y) = \det (I + tf''(\varphi'(y))\varphi''(y)).$$

Let's write $A(y) = f''(\varphi'(y))\varphi''(y)$ and $\lambda_1(y) \leq \lambda_2(y)$ be eigenvalues of A(y). Assume $\min \lambda_1(y) = \lambda_1(y_0) = -M < 0$ and put $t_0 = 1/M$. Then, since $\partial x/\partial y$ $(t, y) \neq 0$ for any $t < t_0$ and $y \in R^2$, we can uniquely solve (4) with respect to y and denote it by y = y(t, x). We see u(t, x) = v(t, y(t, x)) is the smooth solution of (1) and (2) for $t < t_0$. Our problem is to construct the solution for $t > t_0$.

Suppose that $t-t_0$ is positive and sufficiently small. The jacobian of H_t vanishes on $\Sigma_t = \{y \in \mathbb{R}^2; 1+t\lambda_1(y)=0\}$. Assume the condition

(A.1) $\lambda_1(y) \in C^2$, $\operatorname{grad}_y \lambda_1(y) \neq 0$ on Σ_i , and Σ_i is a simple closed curve.

In this case, Σ_i is parametrized as $\Sigma_i = \{(y_1(s), y_2(s)); s \in I\}$ where *I* is an interval and $y_i(s) \in C^2(I)$ (i=1,2). Put

$$\Sigma_t^e = \Big\{ y(s_0) \in \Sigma_t; \frac{d}{ds} v(t, y(s)) = 0 \text{ at } s = s_0 \Big\}.$$

By the definition of Whitney [10], a point Y in $\Sigma_i - \Sigma_i^e$ is a fold point

Formation of Singularities. I

of the mapping H_i , i.e.,

$$(d/ds)x(t, y(s)) \neq 0$$
 at $y = Y$.

Lemma 1. Suppose $Y \in \Sigma_t^e$. If a number of elements of Σ_t^e is two or $\partial v / \partial y \neq 0$ at y = Y, then it follows

$$\frac{d}{ds}x(t, y(s)) = (I + tA(y))\frac{dy}{ds} = 0 \qquad at \ y = Y.$$

Assume here the following condition:

(A.2)
$$\Sigma_{i}^{e} = \{Y_{i}, Y_{2}\} and Y_{i} (i=1, 2) are cusp points of H_{i}, i.e.,
 $\frac{d^{2}}{ds^{2}}x(t, y(s)) \neq 0 \quad at \ y = Y_{i} \ (i=1, 2).$$$

When we denote the restriction of v(t, y) on Σ_t by $v_{\Sigma}(t, y)$, the function v_{Σ} takes its extremums on Σ_t^e . Especially, if we put $v(t, Y_i)$ $=c_i$ (i=1,2) and suppose $c_1 < c_2, v_{\Sigma}$ takes its minimum at $y=Y_1$ and maximum at $y=Y_2$. Denote by D_t the interior of the curve Σ_t and by Ω_t the interior of $H_i(\Sigma_t)$. Then the curve $v(t, y) = c_t$ is tangent to D_t at $y=Y_i$ (i=1,2). Moreover, when we put $H_i(Y_i)=X_i$ (i=1,2), the curve $H_i(\Sigma_t)$ has the cusps at $x=X_1$ and X_2 . See Fig. 1. When we solve the equation (4) with respect to y for any $x \in \Omega_t$, the solution y=y(t,x) becomes three-valued. Write these values by $g_1(t,x), g_2(t,x)$ and $g_3(t,x)$ where $g_2(t,x)$ is in D_t for any $x \in \Omega_t$. Then the solution u(t,x)=v(t,y(t,x)) also is three-valued on Ω_t , i.e., when one puts $u_i(t,x)$ $=v(t,g_i(t,x))$ (i=1,2,3), the solution takes the values $u_1(t,x), u_2(t,x)$ and $u_3(t,x)$ on Ω_t . Next, pick up any number $c \in (c_1, c_2)$, and consider the image of the curve $\{y \in R^2; v(t, y)=c\}$ by H_t . Then its image intersects itself only at one point in Ω_t (see Fig. 1).

Fig. 1

Using these facts, we obtain the following

Lemma 2. i) $u_1(t, x) < u_2(t, x)$ and $u_3(t, x) < u_2(t, x)$ for any $x \in \Omega_i$, ii) The set $\Gamma_i = \{x \in \Omega_i; u_1(t, x) = u_3(t, x)\}$ determines a smooth curve combining the points X_1 and X_2 .

The dotted curve in Fig. 1 means $H_{\iota}^{-1}(\Gamma_{\iota})$. For the proofs of these properties, it's necessary to see the behavior of the inverse mapping H_{ι}^{-1} in a neighborhood of Ω_{ι} . With respect to this problem, we use the famous results of Whitney [10]. Since we are looking for a continuous and one-valued solution, we define the solution

No. 2]

M. TSUJI

 $(6) \qquad u(t,x) = \begin{cases} u_1(t,x) & \text{ in } \Omega_{t,+} \equiv \{x \in \Omega_t; u_3(t,x) - u_1(t,x) > 0\}, \\ u_3(t,x) & \text{ in } \Omega_{t,-} \equiv \{x \in \Omega_t; u_3(t,x) - u_1(t,x) < 0\}. \end{cases}$

§ 4. Semi-concavity of the solution u(t, x). Let's \vec{n} be a normal of Γ_t advancing from $\Omega_{t,-}$ to $\Omega_{t,+}$, and denote

 $\partial u/\partial x(t, x\pm 0) \equiv \lim_{\epsilon \to +0} \partial u/\partial x(t, x\pm \epsilon \vec{n})$ for $x \in \Gamma_{\iota}$.

Then the semi-concavity property (3) is equivalent to the following inequality;

(7) $\langle \partial u/\partial x(t, x+0) - \partial u/\partial x(t, x-0), \bar{n} \rangle \leq 0$ for $x \in \Gamma_t$, which is the entropy condition for a system of conservation law obtained by letting $\partial u/\partial x = w$ be unknown functions. On the other hand, as \bar{n} advances from $\Omega_{t,-}$ to $\Omega_{t,+}$, it follows

 $(d/ds)(u_3(t, x+s\vec{n})-u_1(t, x+s\vec{n}))|_{s=0} \ge 0$ for $x \in \Gamma_t$, which means that, when we write $\vec{n} = k(\partial u_3/\partial x - \partial u_1/\partial x)|_{\Gamma_t}$, k must be non-negative. Therefore (7) is easily obtained. It's already known that a Lipschitz-continuous and semi-concave solution is unique. Hence the solution constructed above is the reasonable one of (1) and (2).

§ 5. Collision of singularities. Let's Γ_1 and Γ_2 be singularities constructed as above. We use notations of Fig. 2. A collision of type (i) doesn't appear. In the case (ii), the solution becomes two-valued on a domain bounded by Γ_1 and Γ_2 . By the similar discussion as in § 3, we can uniquely pick up a one-valued continuous solution there. Its new singularity is written by a dotted curve in (ii) of Fig. 2. There is no problem for the case (iii).

References

- S. H. Benton: Hamilton-Jacobi Equation, A Global Approach. Academic Press (1977).
- [2] T. Debeneix: Certains systèmes hyperboliques quasilinéaires (preprint).
- [3] M. Golubitsky and D. G. Schaeffer: Adv. in Math., 15, 67-71 (1975).
- [4] J. Guckenheimer: Lect. Notes in Math., vol. 468, pp. 108-134 (1975).
- [5] G. Jennings: Adv. in Math., 33, 192-205 (1979).
- [6] S. N. Kruzkov: Math. USSR Sb., 10, 217-243 (1970).
- [7] P. D. Lax: Comm. Pure Appl. Math., 10, 537-566 (1957).
- [8] D. G. Schaeffer: Adv. in Math., 11, 368-386 (1973).
- [9] M. Tsuji: C. R. Acad. Sci. Paris, 289, 397-401 (1979).
- [10] H. Whitney: Ann. of Math., 62, 374-410 (1955).

58