123. A Counterexample to a Problem on Commuting Matrices

By Jiro SEKIGUCHI

Department of Mathematics, Tokyo Metropolitan University (Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1983)

§ 1. Formulation of the problem. Let g be a complex semisimple Lie algebra and put

$$C = \{(X, Y) \in \mathfrak{g} \times \mathfrak{g}; [X, Y] = 0\}.$$

It is known (cf. [4]) that C is an irreducible algebraic variety. As an easy consequence of this result, we find that

(1) $\dim (g_x \cap g_y) \ge \operatorname{rank} g$ for any $(X, Y) \in \mathcal{C}$.

Here g_X and g_Y denote the centralizers of X and Y, respectively. Then Prof. M. Kashiwara asked the author the following

Problem. Let $X \in \mathfrak{g}$. Then does there exist a $Y \in \mathfrak{g}$ such that Y commutes with X and that $\dim (\mathfrak{g}_X \cap \mathfrak{g}_Y) = \operatorname{rank} \mathfrak{g}$?

This problem connects with the study of the holonomic system of differential equations which governs an invariant eigendistribution on a real form of g. For the details, see [2, § 6].

The purpose of this short note is to give a counterexample to this problem when $\mathfrak g$ is simple of type F_4 and $X \in \mathfrak g$ is a certain nilpotent element.

We note here some remarks on the problem.

- (1) If $X \in \mathfrak{g}$ is regular, that is, $\dim \mathfrak{g}_X = \operatorname{rank} \mathfrak{g}$, it is known (cf. [3]) that \mathfrak{g}_X is abelian and therefore $\dim (\mathfrak{g}_X \cap \mathfrak{g}_Y) = \operatorname{rank} \mathfrak{g}$ for any $Y \in \mathfrak{g}_X$.
- (2) It is easy to reduce the problem to the case when X is a distinguished nilpotent element of \mathfrak{g} .
- (3) Assume that \mathfrak{g} is simple and the type of \mathfrak{g} is one of A_i, B_i, C_i , $D_i, E_{\mathfrak{g}}, E_{\mathfrak{g}}, E_{\mathfrak{g}}$. Then for any distinguished nilpotent $X \in \mathfrak{g}$, there exists a $Y \in \mathfrak{g}$ such that Y commutes with X and $\dim \mathfrak{g}_X \cap \mathfrak{g}_Y = \mathrm{rank} \mathfrak{g}$. Namely, the problem is true in these cases. The details of this result will be published elsewhere.
- (4) In the case when $\mathfrak g$ is simple of type $E_{\mathfrak s}$, the problem is rest open.
- § 2. A counterexample to the problem. Let $\mathfrak g$ be a simple Lie algebra of type F_4 and let X be a nilpotent element of $\mathfrak g$ whose weighted Dynkin diagram is $02 \Rightarrow 00$ (cf. [1]).

Claim. For any $Y \in \mathfrak{g}_x$, we have $\dim (\mathfrak{g}_x \cap \mathfrak{g}_y) \ge 6$.

Since rank g=4, this is a counterexample to the problem.

Proof of the claim. By Jacobson-Morozov lemma, there exist H, $Y \in \mathfrak{g}$ satisfying the commutation relation

$$[H, X] = 2X, [H, Y] = -2Y, [X, Y] = H.$$

Then adH induces an endomorphism of \mathfrak{g}_{χ} . It is known (cf. [1]) that $\dim \mathfrak{g}_{\chi}=12$. By direct calculation, we find that the eigenvalues of $adH|\mathfrak{g}_{\chi}$ are 2, 4, 6 and that if we put $V_{k}=\{Z\in\mathfrak{g}_{\chi};[H,Z]=kZ\}$, then $\dim V_{2}=6$, $\dim V_{4}=4$, $\dim V_{6}=2$.

We are now going to prove the claim. Let Z be an arbitrary element of \mathfrak{g} commuting with X. Put $Z=Z_2+Z_4+Z_6$, where $[H,Z_k]=kZ_k$ (k=2,4,6). Then it is clear that $Z_k\in V_k$ (k=2,4,6). We denote $\mathfrak{g}=\mathfrak{g}_X\cap\mathfrak{g}_Z$. Since Z_6 is contained in the center of \mathfrak{g} , it follows that $\mathfrak{g}=\mathfrak{g}_X\cap\mathfrak{g}_{Z_6+Z_4}$. Hence we may assume that $Z_6=0$ without loss of generality.

First assume that $Z_4=0$. Then $Z=Z_2\in V_2$. If Z is a constant multiple of X, we have nothing to prove. Hence we assume that $Z\in CX$. Since $[Z,V_4]\subset V_6$ and since $\dim V_4=4$ and $\dim V_6=2$, there exist linearly independent elements $u_1,u_2\in V_4$ such that $[Z,u_i]=0$ (i=1,2). Then u_1,u_2,X,Y and V_6 are contained in \mathfrak{F} and this implies that $\dim \mathfrak{F} \geq 6$.

Next we consider the case when $Z_4\neq 0$. If $A\in V_4$, then [Z,A]=0 is equivalent to $[Z_2,A]=0$. Then by an argument similar to the above case, we find that there are linearly independent elements $u_1,u_2\in V_4$ commuting with Z. Hence also by an argument similar to the above, we conclude that $\dim \mathfrak{z}\geq 6$. Q.E.D.

References

- [1] G. B. Elkington: Centralizers of unipotent elements in semisimple algebraic groups. J. Algebra, 23, 137-163 (1972).
- [2] R. Hotta and M. Kashiwara: The invariant holonomic system on a semisimple Lie algebra. RIMS preprint, no. 429 (1983).
- [3] B. Kostant: The principal three dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math., 81, 973-1032 (1959).
- [4] R. W. Richardson: Commuting varieties of semi-simple Lie algebras and algebraic groups. Compositio Math., 38, 311-322 (1979).