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1. Let P(, z, E) be a Markov transition probability on a compact
manifold D such that {P,, {>>0}, given by

P,f(x)=jn F@)PE, x, dy),

is a semigroup on C(D). Then, it is known that, under a certain
regularity condition, the generator A of {P,, t>0} is represented as a
second order integro-differential operator for smooth f in the domain
of A([5]). This type of theorems originally go back to Kolmogorov
[3], and various versions are obtained as in Yosida [7] and others.

If D is a bounded open domain with smooth boundary in a mani-
fold, and if {P,, t>>0} is a diffusion semigroup on C(D), then smooth
functions in the domain of the generator satisfy a boundary condition
given by a second order integro-differential operator under a certain
regularity condition. This was obtained by Wentzell [6] as a partial
extension of Feller [1], [2] for one dimensional diffusion.

Here, in this note, we extend the representation theorems of this
type for a complex valued kernel Q(¢, x, ). The point is that Q(, x, E)
has not the non-negative property, and the orders of the correspond-
ing integro-differential operators are no more bounded by 2. They
depend essentially on the order of |Q| (¢, x, E') near the point x as £\|0,
where |Q] is the measure given by the variation of @. Neither the
semigroup property nor the regularity of

Qr@=| Fwae, = a),

as a function of x, are essential for the representations. But, the
corresponding propositions for semigroups can be derived easily from
Theorems 1-4. The proofs of theorems will be published elsewhere.
2. Let D be a manifold, or an open domain with boundary 2D in
a manifold of dimension N, where the manifold and D are of class
C=. For a fixed point « in D=DUaD," let {£(y), 1<k <N} be a local
coordinate in a neighbourhood of x, such that £ (y)’s are defined and
continuous on D, and &P (y)=0, 1<k<N, if and only if y=2. When

1) When D is a manifold, we understand 11at dD=¢ and D=D.
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x i8 a boundary point of D, we assume
ED(»)>0, ye D, EP(Y)=0, if and only if y € oD.
Let Q(¢, z, E) be a complex valued measure on (D, Bp), where By is the
topological ¢-field of D. For |Q| (¢, «, -)-integrable functions f, let

Qf@=, 7)Q, =, dy).

Let 9(A,,) be the set of all functions f in C,(D),» such that there is
the limit A f(x)=lim,, 1/¢(Q,f (@) — f(x)).

Theorem 1. Let D be bounded, and let x be a point in D and
moreover let Q(t,x,E) be a complex valued bounded measure on
(D, Bp) for each t>0. We assume that, for a natural number 1,

(1) fﬁ gll PRI G, z, dy)=0(?), as N0,

(2) £ e D(Ay),» lee| <L

Let n be the smallest of those l such that (1)—(2) hold. Then,
(i) for each f in D(A,,)NC™D),

(3) Af(x)= | %n a, (@)D, f(x)

+ @) — 25 1/a! D, f(@)EPW)u(z, dy),
D\(a} aT<n

where a,(x) and u(x, -) are independent of f, and p(x, -) is a complex
valued o-finite measure on (D\{x}, By ) such that

[ Zler@rix e d<e.
D\{x} k=1

(ii) If QQ@,x, E) is non-negative, then n=1 or 2 and p(x, -) is
non-negative. When n=2, (a,(x), |a|=2) is non-negative definite.
(iii) If, for each neighbourhood U of «,
iQI (t, Z, Uc)=0(t)’ as t\(O’
then the measure u(x, -) vanishes.
@(v) If, for some r in (n—1,n),

N
[, Zler@rieie o ap=0w,  ast0,
then a,(x) vanishes for |a|=n.
Remark 1. (i) If 9(A4,) contains C=(D), then the representa-
tion () is unique.
(ii) The conditions (1)-(2) can be replaced by weaker conditions
N
jb TEPWI R (E, x, dy)=0(t)), for a sequence ¢,\,0,
k=1
Q.5 (@)— 6P (2)=0(t)), as t,\0, |«|<l.
In case D is unbounded, we assume lim, .. > i, | £ (y)|= o0, where
Y—o00 means that y converges to the point at « in the sense of one-
2) C»(D)CHD)) is the set of all n-times continuously differentiable functions
(whose derivatives up to order »n are bounded) for 0<n<oo.

3) For a multi-index a=(ay,-:-,ay), we write |@|=a1+..-+ay, al=ay!...ay!,
EPW=CEP @) - EP W), and Dof(#)=(3/3)m. - -(3/38)n f ().
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point compadctification of D. We fix a compact. neighbourhood D, of
2 contained in D, when 2 is a point of D. If z is a boundary point
of D, let D, be the intersection of D and a compact neighbourhood of
x. We write, for abbreviation, [£@ [ (y) for > &, [£&W)|".

Theorem 2. Let D be unbounded, and let x be a point in D and
moreover let Q(t, x, E) be a complex valued o-finite measure on (D, Bp)
for t>0. We assume, for a natural number I and a positive function
Ow) in Cb(D),

(4) oW =1, y €D,
(5) fﬁ e ED W) |R| ¢, x, dy)=0(),  as t\0,
(6 ) P(w)‘efzm) € @(A(x))a |0(|<l.

Let n be the smallest of those | such that (5)—(6) hold.

Then, for each f in D(A,) N CHD) such that
(1) J@) =000 @) [§]" (), as Yy—oo,
we have

Af@= 3} a.@)D.f@)
+L§\(w; @) —oW) lﬁn 1/a! D, f(@)&@ @)z, dy),

where u(z, -) satisfies L\m o EDT )| ] @, dy)< oo.
The assertions (ii)-(iv) in Theorem 1 hold true, where D in (iv)
and |Q| &, x, U°) in (iii) are replaced by D, and I o W Q| ¢, x, dy),
UG

respectively.

For Theorem 2, similar assertions as in Remark 1 hold true.

3. Boundary conditions. Let z be a boundary point of D. For
a pair of natural numbers (», #’) such that n’<n, we write

I,,={a|(a|—ay)/ntay/v <1}, I}, .,={c|(a|—ay)/n+ay/n <1}

We also write (6@ Y™™ (y) for > 73 |EP@)"+EP @)™

Theorem 3. Let D be bounded, and let x be a boundary point
and moreover let Q(t, x, E) be a complex valued bounded measure on
(D, Bp) for t>0. We assume that, for a pair (n,n’) with n’<n, there
is a function f, in C*(D) such that

Q@ —Fu@ o[ ™ WIQIt 7, dn)),  as N0,
Then, each f in D(A,)NCYD) satisfies a non-trivial boundary
condition
Lf(®)=0@)Af @)+ X ucrinmw, 0a@)D.f(2)
G- > 1/a! D f@E2@))v(z, dy)=0,

D\ {x} acIo

(n,n’)

where v(x, -) 18 a complex valued o-finite measure on (D\{x}, Bp\(x)
such that jm }(E"”’)""""(y) [y (, dy)<oo.



No. 9] Semigroups of Operators of Kernel Type 417

If Q(t, x, -) is non-negative, then the above assumption is satisfied
for n,n)=@2,1). In this case, 6(x)<0, {b,(®), |a|=2, ay=0} is non-
negative definite, b,... 1, (®) >0 and v(x, -) s non-negative.

Theorem 4. Let D be unbounded, let x be a boundary point and
let Q(t, z, E) be a complex valued o-finite measure on (D, Bg) for t>0.
We assume that there are a positive function p,, in C,(D), which
satisfies (4), and o function f, in C(D) such that, for a pair (n,n),

Q.fo(@)—fo(x)
o {[, € m@+]  pu@ier@hiale e ),

as 0.
Then, each f in D(A,) N CHD) such that (7) holds satisfies a non-
trivial boundary condition

Lf@)=0@)AS @)+ acrin,n) 0a(@)Df(2)
, W —pw®) . 2. 1/a! D @)X @z, dy)=0,

D\{z I

0
(n,nr)

where v(x, -) satisfies

@)\ (n,n’) (z) |n
([, €@+ 00 @IE T @) 1], di) <.
If Q(t, x, E) is non-negative and, for some n>2 and n'>1,

[ cemyemaiale,z, ap
ﬂvo( j @I WIQIE dy)), as £\0,

then the above assumption is satisfied for (n,n)=(2,1). In this case,
(@) <0, (0.(2), |@|=2, ay=0) is non-negative definite, b
and v(x, -) is non-negative.
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