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97. On v.Ideals in a VHC Order*

By Hidetoshi VIARUBAYASHI
College of General Education, Osaka University

(Communicated by Shokichi IYANA(A, M. J. A., Sept. 12, 1983)

Throughout this note, Q will be a simple artinian ring and R will
be an order in Q with 1. Let C (C’) be a right (left) Gabriel topology
on R cogenerated by the right (left) injective hull of Q/R. In [4], R
is called a VH (v-hereditary) order if for any R-ideal A such that A
A (A-- A) we have (A(R" A))--O(A) (resp. ((R" A)rA)v-- O(A)).

We say that R is a VHC order if it is a VH order satisfying the maxi-
mum condition on C-closed right ideals and C’-closed left ideals. The
concept of VHC orders is a Krull type generalization of HNP (heredi-
tary noetherian prime)rings. The aim of this note is to extend
Robson’s theorems and Fujita-Nishida’s theorems in HNP rings to
the case of VHC orders (cf. [1], [7] and [3]). Concerning our termi-
nology and notations we refer to [4]. See [6] for many interesting
examples of VHC orders.

Proposition 1. The following two conditions are equivalent"
(1) v(A(R" A))=O(A) for any R-ideal A such that vA=A.
(2) v(A(R" A))=(O(A)) for any R-ideal A.
Proof. (2)@(1) is clear, because (O(A))=O(A) for any R-ideal

A with A--A. (1)(2)" Since ADA, we have I e O(A)=(A(R’A))
c(A(R’A))=(A(R’A)) by Lemma 1.1 of [4]. It is clear that
A(R" A) O(A) and so (A(R" A))(O(A)). On the other hand,
A(R" A) is an (O(A), O(A))-bimodule and thus (A(R’A)) is a right
O(A)-module. Hence it follows that O(A)c(A(R" A)) and that
(O(A))c(A(R" A)).

From now on, R will be a VHC order in a simple artinian ring Q.
Lemma 1. Leg A be any R-ideal. Then A--A.
Proof. This is proved as in Lemma 1.2 of [4] by using Propo-

sition 1.
We consider the following sets of v-ideals of R" V(R)-{A" ideal of

R IA" v-ideal}D V(R)={A e V(R) IAcP" prime v-ideal P" maximal
v-ideal}. If R has enough v-invertible ideals, then V(R)-V(R) by
Lemma 1.2 of [5]. We do not have an example of VHC order in which
V(R)r(R) up to now. We study the properties of ideals belonging
to V(R).
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Proposition 2. (1) If A, B e V(R), then ABe V(R).
(2) Let A and B be elements in V(R) such that A cB. If A

V(R), then B e V(R).
(3) If A e V(R), then Ass(R/A) consists of maximal v-ideals of

R.
(4) Let X be any v-invertible ideal of R. Then X e V(R).
(5) Let A be any element in V(R). Then A e V(R) if and only

if there are maximal v-ideals M, ..., M satisfying M...MnAcM
for any i=l, ..., n.

Proof. (1), (2) and (3) are trivial. (4)" As in Propositions 2.10
and 2.11 of [4], we have R= fqRefqS(R), where Re is an HNP ring
whose Jacobson radical P’=PRe=ReP is a unique maximal invertible
ideal of Re (P ranges over all maximal v-invertible ideals of R), S
=S(R)= U Y- (Y runs over all v-invertible ideals of R), and (XS)=S
=(SX). Now let A be a prime v-ideal containing X. Then we have
A fq ARe fq (AS)= fq ARe fq S. There are only a finite number of
maximal v-invertible ideals P, ..., P of R such that Re,ARe, (1_i
n) and so A A fq fq A (A ARe, R). Since A is a prime ideal,
we have A=A or some i and so ARe, is also. a prime ideal. Write
P=M fq... fq M, an intersection of a cycle, where M are maximal
v-ideals of R. Then {MRe, IIj<_k} are only prime ideals of Re, (see
Proposition 2.7 of [4]). Thus ARe,=MRe, for some ] and A=ARe,
fq R=M, a maximal v-ideal o.f R. Since R satisfies a.c.c, on v-ideals
o.f R, (5) easily follows (see the proof of Lemma 1.2 of [8]).

Proposition 3. (1) Let A be any element in V(R). Then A
(XB) for some v-invertible ideal X of R and eventually v-idempotent

ideal B e V(R).
(2) Let C be an eventually v-idempotent ideal in V(R) and let

M, ", M be the full set of maximal v-ideals containing C. Then
(Cn) =((M fq fq M)) and is v-idempotent.

Proof. (1) As in Theorem 4.2 of [1]. (2) follows from the proof
of Proposition 1.4 of [6].

Lemma 2. Let M and Mz be ctny maximal v-ideals, of R such that
O(M)=/=Ot(M) for all i, j (1=<i,]2)and let A =MFqMz. Then A
=(MMz)=(MzM) and is v-idempotent.

Proof. First we note that A e V(R). Assume that A is not v-
idempotent. Then, by Lemma 1.3 of [6], we have R(A(R’A)r)A
nd R((R’A)A).A, because ((R" A)A) and (A(R" A)) are both
v-idempotent. So we may assume that ((R" A)A)--M by Propo-
sitions 2 and 3, and then A=(M.M) by Lemma 1.3 o.f [6]. Thus we
have O(A)=O,(M). Assume that M= (A(R" A)r)v. Then O(M)
O(A)O(M) and so MMz. This is a contradiction. Hence Mz
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=(A(R" A)). Now assume that W=O(M)O(M.)R. Then R
(R" W)r(R’O(Mz))=M. and so (R" W)r=M.. Similarly, we have
(R" W)--M. Thus O(M)--W,--,W=O(M) by Lemma 1. This is
a contradiction. Hence O(M) O(M.)-R. On the other hand, since
(A), is v-idempotent by Lemma 1.3 of [6], we have K--O((A)o)
O((A))R by the same method as in Lemma 1.7 of [6]. The in-

clusions (A)oc (R" K) R imply that (R" K) is contained in a maximal
v-ideal of R, say M. Then K-,KO(M)_R. This entails that
Or(M) is a v-ideal. So it follows rom Lemma 1.7 of [2] that there
exists a v-idempotent ideal N containing (A), such that O(M)-O(N).
Since O(M) is minimal in the set of all overrings of R which are v-
ideals, N must be a maximal v-ideal of R and thus N-M., which is a
contradiction. Therefore A must be v-idempotent.

Distinct v-idempotent, maximal v-ideals M, ..., M are called an
open cycle if O(M)=O(M.), ..., O(M_)=O(M) but O(Mn)=/=O(M).
The following proposition is due to. Fujita and Nishida if R is an
HNP ring which is obtained in a similar way to. prove Theorem 1.3
[3] by using Lemma 1.3 of [6], Propositions 2, 3 and Lemma 2.

Proposition 4. Let M, ..., Mn be an open cycle and let A-M
( M. Then

(1) (A(R" A))--M and ((R" A)A)-Mn.
(2) A---(M...M)o.
(3) (AM),-- (M A), for i= l, ..., n--1.
(4) (A ((R A)r)t)v (M M)o and (((R A)) A),= (Mn

M_ ),. In particular, (A’), (A ((R A))), (((R A)t) A
=(M...M).

(5) A (A)o... (A’), (An ) =....

Let M, ..., M and N, ..., N, be distinct v-idempotent, maximal
v-ideals of R. Then, following [3], M,..., M and N,...N, are
.separated if O(M,)=O(N) and O(N)=/=O(M,) for all i=1, ..., m
and ]--1, ..., n. Proposition 3 allows us to. study v-invertible ideals
and eventually v-idempotent ideals separately. The structure of v-
fnvertible ideals was completely determined in [4] (see Theorem 1.13
o.f [4]). To study eventually v-idempotent ideals of R, let M,, ..., M,
be a finite set of distinct v-idempotent, maximal v-ideals of R such
that A--M, M, is not co.ntained in a.ny v-invertible ideals of R
.(see Proposition 3). Then we classify it as follows;

[_)={M, M()}, a.nd each of M,(a) {M,, ..,M,}- ...,
M( is an open cycle.

(b) M, ..., M() and M, ..., M() are separated for a.ny i,
(i=/=]). Put A=M M(). Then we have

Proposition 5. With the above notations and assumption we
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have A (A1. A) and (AAj) (AjA) (cf [3]).
Proof. By Proposition 4, A=(M...M) and so (AA)

=(AA) by Lemma 2. We shall prove A--(A...A) by induction
on k. If k---l, then there is nothing to prove. So we may assume
that B---A A_=(A. .A_). Then (BA)=(AB) by Lemma
2 and (B-t- A)- R. Thus A B A ((B A)(B + A)) (BA)
+(AB)=(BA)=(A...A) and therefore A =(A.... A).

The next proposition is due to Robson in case R is an HNP ring

(see [7]) and the author obtained the proposition if R is a VHC order
with enough v-invertible ideals (see [6]).

Proposition 6. Let MI, ..., M be maximal v-ideals of R and let
A--MI... M. Then A is v-idempotent if and only if Or(M)
=/=O(M) for any i, ].

Proof. Assume that A is v-idempotent and that O(M)=O(M)
for some i, ]. If i=], then M is v-invertible and so A ((M)
=0, contradiction. Hence i=/=]. Let A--(A,...A) be the decom-
position of A as in Proposition 5. Then there exists A, say A, such
that A=M...M, with n(1)_2. Then we have, by Propo-
sition 4, (MA. A) ((R A)AA. A) ((R A AA.. A)
-(MAA]...A)M, which is a contradiction. Hence O(M)
=/=O(M) for all i, ]. W.e prove the sufficiency by induction on n (see
Lemma 2 in case n-2). So we may assume that B=M... M_
--(M. .M_) is v-idempotent and (B/M)-R. Thus A-B M

((B M,)(B -t- M)) ((BM)-- (MB))--- (M. M) by Lemma 2.
Hence A=(M...M), and is v-idempotent, because (MtM),--(MM),.

References

[1] D. Eisenbud and J. C. Robson: Hereditary noetherian prime rings. J.
Algebra, 16, 86-104 (1970).

2 H. Fujita: A generalization of Krull orders (preprint).
3 H. Fujita and K. Nishida: Ideals of hereditary noetherian prime rings.

Hokkaido Math. J., 11, 286-294 (1982).
4 H. Marubayashi: A Krull type. generalization of HNP rings with enough

invertible ideals. Comm. in Algebra, 11, 469-499 (1983).
[5 : Remarks on VHC orders in a simple artinian ring (to. appear in

Lect. Notes in Math., Springer-Verlag).
6 A skew polynomial ring over a v-HC order with enough v-invertible

ideals (to appear in Comm. in Algebra).
7 J. C. Robson: Idealizers and hereditary noetherian prime rings. J. Alge-

bra, .22, 45-81 (1972).
8 P.F. Smith: Rings with enough invertible ideals. Can. J. Math., 3;, 131-

44 (98s).


