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1. Introduction. The purpose of this note is to announce a result
on the stability of noncompact leaves of codimension one foliations
which extends a 2-dimensional theorem of Cantwell-Conlon [1] to all
dimensions. We assume throughout that foliations are always trans-
versely orientable, codimension one foliations of closed manifolds with
smooth leaves. Recall that a proper leaf of a foliation is stable if it
admits a trivially foliated, saturated neighborhood (see [3]).

Definition ([1]). A smooth manifold L has the Cr-stability prop-
erty if, whenever L is diffeomorphic to a proper leaf of a C foliation,
that leaf is stable.

The problem we consider is to characterize the stability property
of a manifold L in terms of the topology of L. In the case when L
is compact, Thurston [4] has almost completely settled this problem."
a compact manifold L has the Cr-stability property (l<:r<:oo) if and
only if H(L;R)-O. However, in the case when L is noncompact,
few partial answers have been known. An impo.rtant remark is that
the direct analogue of Thurston’s result does not hold in this case.
In fact, it is shown in [1] that there are infinitely many noncompact
surfaces with no.ntrivial real first cohomology groups which have the
C-stability property. (Although they do not have the C-stability
property.) Our results give a necessary condition (Proposition 1) and
a sufficient condition (Theorem. 3) under which a manifold has the C-stability property.

2. Statement of results. Let /I(L;R) be the image of the ca-
nonical homomorphism H(L; R)-HI(L; R), where H denotes the first
cohomology group with compact suppo.rts. (Note that/(L R) coin-
cides with H(L; R) if L is compact.)

First we observe the following
Proposition 1. Suppose that L is a manifold which can be realized

as a proper leaf of some C foliation (O<=r<=co). If L has the C-stability property, then/I(L R)--0.
This proposition says that the vanishing of/(L R) is a necessary

condition for the stability of L. It is, however, not a sufficient con-
dition. In fact, for example, we have

Proposition 2. T R does not have the Cr-stability property
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(0__<_r_<_ c).
In order to obtain a sufficient condition, we make a certain re-

striction on the behavior of ends of manifolds. First we briefly recall
some basic definitions about ends.

An end e is determined by a pair (M,, {U}_-0) where M is a mani-
old and UoUU.... is a decreasing sequence of nonempty, con-
nected open subsets of M such that 1) U-U is compact or each i,
and 2)T--0 U=. Two pairs (M, {U}) and (M’, {U}) determine the
same end if there exist a connected open subset W (resp. W’) of M
(resp. M’) and a diffeomorphism f" WoW’ such that 1) U (resp. U)
is contained in W (resp. W’) for large i, and 2) every f(U) contains
some U. and very U contains some f(U). An end e is periodic if e
is determined by (M, {g(U)}) where U is a subset of M and g a diffeo-
morphism of U into U. In this case, U-g(U) is called a period of e
and U is called a periodic neighborhood of e.

Now we define a class P of ends s ollows. is described as a
disjoint union of subsets (k=0, 1, 2, ...). Aa end e belongs to 0
if e is a periodic end of period KI, where K is a connected closed
manifold satisfying the following condition"

(.) The quotient group of ,(K) by the smallest normal subgroup
containing all torsion elements is isomorphic to {1} or Z.

Suppose we have defined or 0__<i<_k-1. An end e belongs to
if e is constructed in the following way" Let K be a connected

closed manifold satisfying (.), and let B, B, ..., B be pairwise dis-
joint, codimension zero, compact submaniolds of KInt I such that
3B satisfies (.) for each i. Let N (li_<_s) be a periodic neighborhood
of an end e eP (0_<_k__< k-1, and at least one of the k’s is equal to
k-l) such that 3N is diffeomorphic to 3B. Then e is a periodic end
of period (K XI-U= Int B) U(U=, N).

The, main result of this note is the following

Theorem :. Let L be a smooth manifold such that /I(L;R)=0
and that all ends of L belong to . Then L has the Cr-stability
property (2 r c).

Remarks. 1) If the condition (.) is dropped in the definition of, the conclusion of Theorem 3 does not hold (see Proposition 2).
2) Theorem 3 fails if r=<l. (For example, the cylinder SR

does not have the C-stability property.)
3) If a proper leaf satisfies the hypothesis of Theorem 3, it

actually has a saturated neighborhood which is fibered over S with
fibers as leaves.

:. Indication of proof. We use the following two theorems in
the proof of Theorem 3.
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Hector’s uniform convergence theorem [2]. Let be a C foli-
ation of a closed manifold M. Fix a "nice" finite cover of M by if-
charts. Let {P.Q..P} be a sequence of basic cycles (=conju-
gates of simple plaque cycles Q by simple plaque chains ) on a
proper leaf of ff based at a plaque P such that the distance between
P and Q diverges to infinity as n--.oo. Then the holonomy associated
to ,Q,P converges to the identity uniformly.

Relative version of Thurston’s generalized Reeb stability theo.
rein [4]. Let K be a compact codimension zero submanifold of a C
foliation such that 1)each component of OK has trivial holonomy, and
2) the restriction homomorphism i*" H’(K; R)--H(OK;R) is injective.
Then K is stable.

The proof of Theorem 3 proceeds roughly as follows" Let L be
a proper leaf of a C foliation (2r_oo) satisfying the hypothesis of
the theorem,. By Hector’s theorem and the condition on the ends of
L, there is a compact subset K of L such that L-K is stable. Then
by Thurston’s theorem and the condition that/(L R)=0, K is stable.
Combining these, we see that L itself is stable.

Details will appear elsewhere in near future.
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