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1. Introduction and methods. With each con’inuous map f"
Rn--R we associate an entire function f#(z) given by

f(z) eN (f (x) do)n .
sn-,

We shall assume throughout that
(1.1) f(x)=/=O for all x e Sn-l,
hence N(f(x))O on S-. When it is so, the integral

represents a holomorphic function for a=Re s0. We have
(1.3) F(f s)=F(s)K(f; s)
where F(s) is the usual gamma function and

(1.4) K(f s)= N(f(x))-dw_.
Jsn-

By (1.1), K(f;s) is entire and (1.3) yields the meromorphic continu-
atio.n of F(f; s) onto C.

When n=m=2, f(x)=(ax, bx), Oab and s=1/2, our K(f;s)
becomes the complete elliptic integral"

K f; = hcos0+bsino coso+bsin0
Gauss proved, by means of quadratic transformations of theta series,

(1)(G) K f =K f f(x)=(ax, bx)

where a=, b=(a+b)/2.**) The repeated application of (G)
yields immediately the relation K(f ;1/2)=M(a, b)- where M(a, b)
means the arithmetic-geometric of a, b.

In this paper, we shall generalize (G) for our K(f;s) defined by
(1.4) when n=m=2p, p>a=Res>(p-1)/2 and f(x)=(ax,..., axe,
bx+,..., bx). The proof depends on the act that, under the as-
sumptions, K(f;s) can be expressed as a hypergeometric series via

*) We denote by (x, y) the standard inner product in Rn. We put Nx--(x, x).
The unit sphere is Sn-l-(x e Rn; Nx--1}. We denote by do,n_1 the volume element
of Sn- such that the volume of Sn- is 1.

**) See [1] p. 352. See also [7] 9 and [8]p. 269.
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Gegenbauer polynomials. The quadratic transformation of hyper-
geometric series takes the place of that of theta series in Gauss’ case.

Back to the general situation, the Taylor expansion at 0 of the
entire function f(z) is given by

Z(1.5) f(z)-- K(f -k)

Therefore, by (1.2), (1.3), (1.5), we have

(1.6) F(f; )=I-’()K(f )-- t- dt K (f -k) (- t)

2. Linear maps. When f" Rn---R is a linear map satisfying
(1.1), calling 2--(1,’’ ", ’n)the arbitrarily ordered set of eigenvalues
of the quadratic form N(f(x)), we have

b(2;2) ln--(1 1) eRK(f k)-
b (2 ;1)

where the numbers b(2; 2) are defined by the generating relation

(2.1) E b(2; )t= II (1-4t)-/.**)
k=0 i=1

In particular, we have

b(2; 1)= 4(n/2’ k) ***>
k

Therefore, (1.6) becomes

(2.2) F(f; s)=: t-dt o b(2; )(..-t ).(n/2, k)
3. Certain diagonal maps. Assume now that n=m=2p and

consider the ollowing diagonal map
f(x)=(ax, ..., axe, bx/, ..., bx), O(a<=b.

Clearly this map satisfies (1.1). In view of the generating relation of
the Gegenbauer polynomials"

C/(x)z (1 2xz+z)
k=0

the relation (2.1) with 2, 2 =a, 2,/ 2,=b yields

b(2; .D=C/( a+b )2ab
(4ab)"

Hence (2.2) becomes

F(f s>=J’ t’-’dt C"((a+b’)/2ab)
,=o (p, k)

*> This shows that the values of K(f; s) for a>0 are determined by its
values at 0 and negative integers --k. Compare Ramanujan’s formula (B) on

p. 186 of [2]. In [4], [5] we wrote Nk(f)for K(f,-k).
**> See 1 .of [4].

/a(a+l)...(a+k--1), k_l
***) (a, k)--(1 k--O’ a e C, k e Z.
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=: tS-le-((2+)/2)tFl( p12 ((a-bOt ) dt*

where the last equality is crucial and follows from a quadratic trans-
formation formula of hypergeometric series. **) In other words, we
have, by (1.3),

(3.1) K(f s)= (ab)-’ F(s, p-s p+ 1 (b -a) )2 ;-

In order to use the integral representation of hypergeometric series,
assume that pa(p-1)/2, a--Re s. Then, (3.1) becomes

(3.2) K(f s)--(ab) F((p+ 1)/2)
F(p-s)F(s--(p--1)/2)

XIotP-S-I(I__t)s-(P-I)/2-I(I+ (b--{)2t)-Sd4ab

If we put t=sin 8, then (3.2) becomes

K(f s)- 2F((p+l)/2)
T’(p--s)T’(s--(p--1)/2)

(sin O)’-"-(eos O)"-’ b+ (b-ay sin
4

Summarizing, we obtain
Theorem. Let Oab and a=/-d, b=(a+b)/2. Assume that

pa(p-1)/2, a=Re s. Then, we have
do_

s2-, (a(x+ +x)+b (x++ +x))

F(p-s)F(s-(p-1)12) (a. cos +b sin )’
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