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Faculty of Education, Ibaraki University

(Communicated by K6saku YOSIDA, M. $. A., Jan. 12, 1983)

Introduction. Majda [4] obtained a representatio.n of the scat.
tering kernel S(s, , o) for the scattering by an obstacle ) (in R), and
showed

( ) supp S(., -, w)c(-, -2r()],
(0.)

(ii) S(s, -w, ) is. singular (not C) at s--2r(w),
where r(w)-inf xw. In the present note we shall consider the cor-

x@

responding problems for the acoustic scattering by an inh_mgeneous
fluid.

Let. a(x)-=a(x) e C(Rn) (i, ]= 1, ..., n (n>__2)) satisfy

] a(x)$=1 ],
ij=l

a(x)-- 1, a(x)--O (i])
and set

Au= a(a(x)au).
i,j=l

We consider the Cauchy problem

(-A)u(t, x)-0 in RIRn,
u(O, x)--f(x), tu(O, X)---f2(x) on Rn.

In the same wag as Lax and Phillips. [1], [2], we define the scattering
operator S L(R Sn-)--L(R Sn-l) by S- T2(W+)-W-(T;)-, where
T2 (T)is the outgoing (incoming) translation representation associ-
ated with the unperturbed equation and W are the wave operators
(cf. Lax and Phillips. [1], [2], the author [6]). S is. represented with
the distribution kernel S(s, , oo) (called the scattering kernel) (cL
Majda [4], Lax and Phillips [3], the author [6])"

tO=.[I" S(s-t, t, o)k(t, o)dtdo.Sk(s,

Let v(t, x ) ( e S-) be the solution of the equation
(3-A)v -2-(2i)-%3-A)(t-xo) in R R,
v=0 o.r t -r0.

v(t, x; oo) is a C function of x and o with the value (Rt).
Theorem 1. Set

)=; (-v)(x-s, x )dx ([::]=-z)So(s,
Rn
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Kk=F-[(sgn a)n-(Fk)(a)],
where F denotes the Fourier transformation in s. Then we have

Sk(s, t)-[[ So(s-t, , (o)k(t, (o)dtdo+Kk(s, ).

Note that S(s, , )=S0(s, t, ) i t4:w. In the scattering by an
obstacle, the corresponding representation of the scattering kernel
has been. obtained (cf. Majda [4], the autho.r [6]).

Using Theorem 1, we shall derive results corresponding to (0.1).
Denote by (q(t y), p(t;y)) the solution o.f the equation

tit _32;(q, p), dt _fl;(q, p),(0.2) d- dp
qlt-__o=y (y=-r0), p]t=_ro--O ((0 e Sn-1),

where (x, )= --{,
Theorem 2. For

M(O) {: o)= --0, lira p(t; )=0},

(0) sup lim < q(t ), O> t}.
y Mo(O) ---,

Then we have
sing supp So(., t, w) (- c, s(t)].

Theorem :. Let n=2. Then S0(s, t, ) is singular at s=s(t).
It is thought that So(s, t, ) is. singular at s=s(0) also. in the case

o.f n>_3. Our proof o.f Theorem 3, however, is not valid in this case.
We note that in proof o.f Theorem 3 it does not suffice only to. examine
the wave front set o.t v(t, x;). We can. prove Theorem 1 by the
same procedure as in the author [6], whose idea is due to. Majda [4],
and so we omit its proof. We only give outlines o.f the proofs of
Theorems 2 and 3.

1. Proof o Theorem 2. Set w(t, x)=v(t, x; )+2-(2i)-(t-xw). Then, by Theorem 1 we have

(1.1) So(s, t, (o)=.[., (3-[w)(xt- s, x)dx.

Noting that w(t, x) satisfies the equation
’(3-A)w=0 in RRn,

(1.2) w(--ro, x)=2-’(2zi)-(--ro--Xo) on R,
w(--ro, x)=2-(2i)-’(--ro--Xo) on R,

by the well-known methods o.f the Fourier integral operators, we can
know of the wave front set WF[w(t, x)]"

Proposition 1.1.
WF[w(t, x)] ={(t, x; , ) t e R, x=q(t y), e R--{0},

= -po(t y)}.
Since 3-A= [:2 for Ix]>=ro, from this. proposition we obtain
Lemma 1.2. For any 0 there is a conic neighborhood F in
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RI,R--{0} containing (1,--0) and (-1, 0) such that if (t, x; r,
e WF[w(t, x)] R R F, (t, x) satisfies

Ixl<__r or xO--t<=s(O)+,
where r is some constant independent of .

To prove Theorem 2, we have only to, show that o.r any p(s)
e C(R) with supp[p] c (s(t), + c) F[p(s)So(s, , w)] (a) decreases rapid-

ly as ,,--o (where F[k]O)= e’k(s)ds).
Lemma 1.:. Let a(x) be a C function on R such that a(x)=l

for Ix I>= ( is any constant). Then, for any p(s) e C(R) we have
F[(s)So(s, t, )] () =[p(xt?--t)-Fq(w)]

where denotes the Fourier transformation in (t, x).
Take the unctio.n a(x) in Lemma 1.3 so. that a(x)=O o.r

and a(x)= 1 fo.r Ix ]=>r4-1 (r, is the constant in Lemma 1.2). It ollo.ws
from Lemma 1.3 that
F[p(s)Zo(s, 8, w)] (a)-[p(xS- t)z(Dt, Dx)3-E (aw)] (a,

where Z(r, ) is. a C function ho.mogeneous of o.rder 0 satisfying
supp [z]cF (F is. the set in Lemma 1.2) and (r, )=1 in a neighbor-
hoo.d o.f (1, -t), (-1, 0). Lemma 1.2 implies, that

WF[p(xS-- t)z(Dt, Dx)3r- (aw)]
There2ore Theorem 2 is. o.btained.

2. Proof of Theorem :. It suffices to. show that. or any small
(0) there exist so.me C unction p(s) and a real number m such that
supp [p] [s(0)-e, s(0)+] and (l+lal)F[p(s)S0(s, O, o)](a) L2(R1).
We cannot justify this assertion only by examining WF[w] (w is the
solution of (1.2)).

Let us. consider only the case that M(t0 is bounded. Deno.te by
(t, x) the solution of (1.2) with the different initial data (-r0, x)
=r(x)w(-ro, x), 3(-ro, x)=r(x)3w(-ro, x) on R, where r(x) is. a C
function such that supp [r] is. contained in a sufficiently small neighbor-
hood of M(t) and that r(x)= 1 on a neighborho.od o.f M(t0. Let a(x)
be the function in the proof o.f Theorem 2. Then, if supp[p] is small
enough, by Lemma 1.3 we have

F[p(s)So(s, , )](a)=[(xe- t)ar-()](a, -o-tO--I-O(Iol-).
Furthermore it is seen that i is large enough we obtain or any
integer N(0)

[p(x t)a-" E:] (a)] O, )

’[0(x)--(, x)](-0)+0(ll-+).
Here, ’ denotes, the Fourier transformation in x, is an integer
independent o N and supp [a]c{x" r<=]xl<__r+l} (r is the co.nstant
in Lemma 1.2). Let (q(t; s, x, ), p(t;s, x, )) be the so.lution o (0.2)
with the different initial data ql=,=x, p]=,=.



16 H. SO(A [Vol. 59(A),

Lemma 2.1. Let s and t be arbitrary constants in [-’o, i] satis-
fying Is-tl<=3. Assume that (x) is any real-valued C function with
?(q(t s, y, ]))=0, 3(q(t s, y, V))=0 and that fl(x) be any C function
with supp [fl] {x" x- q(t s, y, ) }. Then, if and are small
enough, there is a real-valued C function (x) such that (y)=0,
x(y)=0 and that for any integer N (0)

’[e()(x)(t, x)](ap(t s, y, ))
=exp{iay-iap(t s, y, )q(t s, y, )}

xff’ e z()e-(, ) ()+0(1-’9,
where is an integer independent of N and Z(x) is a C function such
that lim dis(y, supp [])=0.

a+0

Take a sufficiently fine partition o.f unity {(x)} on R, and apply
Lemma 2.1 to each ’[a(x)fl(x)(, x)] (-a) repeatedly (divide [-0,
into. many fine intervals and use Lemma 2.1 on each interval). Then
it is seen that there are C functions {(x)} and {(x)} such that

[p(xO- t)-()](a, --aO) exp{-ia(ro+ +s())}a-) ]E’ e*() E Z(x)a- (-r0, x) (-a)+0(]a]-+).
k=l L

We see that if we choose a and p appropriately the above and
satisfy all the assumptions o the o.llowing lemma, and therefore
Theorem 3 is obtained.

Lemma 2.2. Assume that {(x)}=,...,, are real-valued C func-.
tions on R such that (y)=0, 3(y)=O (yw=-ro). Let T(x) and
{Z(x)}=l,...,, belong to C(R) and satisfy T(x)O, 0(x)0 and

j=O,...,N k=l

Z0(y)(y)0. Then for some m (1/2) we have
k=l

(1+I) if’ e* z(z)- r(z)(-o-z) (-) L().
= j=o

This lemma is not correct in the case of n3. Its proof
similar to that o.f Theorem 1 in the author [5].
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