No. 1] Proc. Japan Acad., 59, Ser. A (1983) 13

5. Singular Support of the Scattering Kernel for the Wave
Equation Perturbed in a Bounded Domain

By Hideo Soga
Faculty of Education, Ibaraki University

(Communicated by Kosaku YosSIDA, M. J. A., Jan. 12, 1983)

Introduction. Majda [4] obtained a representation of the scat-
tering kernel S(s, 6, w) for the scattering by an obstacle @ (in R®), and
showed
©.1) (i) supp S(-, —w, ®)T(—o0, —2r(w)],

) (ii) S(s, —o, 0) is singular (not C~) at s= —2r(w),
where 7(w)=inf zw. In the present note we shall consider the cor-
responding pf'te)?olems for the acoustic scattering by an inhcmogeneous
fluid.

Let a,,(x)=0a,(x) e C*(R") (4, j=1, - - -, n (n=>2)) satisfy

PIENCORTH AL

a,(@®)=1, a,(x)=0 (ixj)  for |x|>7r,

and set
Au= MZ_‘,I 0., (a,4(2)0,,u).

We consider the Cauchy problem

{(aﬁ—A)u(t, 2)=0 in R'XR",

w0, )=r,(®), 3,u(0, )=f(x)  on R".

In the same way as Lax and Phillips [1], [2], we define the scattering
operator S: L*(R* X 8" ")—LR'X S"") by S=T;(W*)"*W-(T;)"!, where
Ty (T7) is the outgoing (incoming) translation representation associ-
ated with the unperturbed equation and W+* are the wave operators
(cf. Lax and Phillips [1], [2], the author [6]). S is represented with

the distribution kernel S(s, 6, ») (called the scattering kernel) (cf.
Majda [4], Lax and Phillips [3], the author [6]):

Sk(s, 6) = f j S(s—t, 8, o)k, w)dtdo.

Let v(t,  ; ®) (0 € S*~*) be the solution of the equation
{(8%—A)v= —27'@r1)' (02— A)0(t—2w) in R'XR",
v=0 for t<< —,.
v(t, ; ») is a C~ function of z and w with the value S'(RY).
Theorem 1. Set

Ss,0,0)=[ @ 00)@o—s,2;0)d0 (O=3—),
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Kk=F-"[(sgno)"'(Fk)(o)],
where F denotes the Fourier transformation in s. Then we have

Sh(s, a)=” S((s—t, 8, w)k(t, w)dtdw-+Kk(s, 6).

Note that S(s, 8, 0)=S(s, 0, v) if 6xw. In the scattering by an
obstacle, the corresponding representation of the scattering kernel
has been obtained (cf. Majda [4], the author [6]).

Using Theorem 1, we shall derive results corresponding to (0.1).
Denote by (q,(t; v), p.(t; ¥)) the solution of the equation

dt _ at _ . ._
©0.2) {Ti&” 0@, D), =00 D),
Aimre=Y Wo=-1), Pl-_ypy=0 (@eS",

where 2;(z, &)= — {i;é‘l a, ,(x)&,&,}m.
Theorem 2. For w, § € S™* set
M.O)={y: yo=—r, limp,(¢; y)=0}
s,@= sup lim{<q,(;¥y), 6> —1t}.

YEMy(0) t—oo
Then we have
sing supp Sy(-, 6, ©) C(— o0, 8,(O)].

Theorem 3. Let n=2. Then S, 0, ») is singular at s=s,0).

It is thought that S,(s, 6, 0) is singular at s=s,(6) also in the case
of n=38. Our proof of Theorem 3, however, is not valid in this case.
We note that in proof of Theorem 3 it does not suffice only to examine
the wave front set of v(¢, x; w). We can prove Theorem 1 by the
same procedure as in the author [6], whose idea is due to Majda [4],
and so we omit its proof. We only give outlines of the proofs of
Theorems 2 and 3.

§1. Proof of Theorem 2. Set w(t, x)=v(t, x; 0)+2'(2ri)'~"
.0(t—2w). Then, by Theorem 1 we have

1.1) S,(s, 6, w)=fm G- Cw) (wf—s, x)dz.

Noting that w(t, x) satisfies the equation
@ —Aw=0 in R'XR",
1.2) wW(—17, 2)=2"12r1)' "9 (—7,—2w) on R*,
0, W(—1y, £)=2"12r1)! "0'(—1r,— 2w) on R",
by the well-known methods of the Fourier integral operators, we can
know of the wave front set WF[w(¢, x)]:
Proposition 1.1.
WFw(t, 2)]={{, z;7,8§):te R, x=q,(t; y), 7€ R'—{0},
&= —1p,(t; Y}
Since 3;— A =[] for |#|=7, from this proposition we obtain
Lemma 1.2. For any ¢>0 there is a conic neighborhood I' in
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R X Ry—{0} containing (1, —6) and (—1,60) such that if (¢, x;7, &)
e WFw(t, x)INR:XR:X T, (t, x) satisfies
l|<r, or x0—t<s,(0)+e,
where r, is some constant independent of e.
To prove Theorem 2, we have only to show that for any p(s)
€ Cy(R") with supplpl C(5,(0), + o0) FLo(s)Sy(s, 6, »)](s) decreases rapid-

Iy as |o|—oo (Where FIk] (0)=j e“"k(s)ds).

Lemma 1.3. Let a(x) be a C* function on R such that a(x)=1

for |x|=% (¥ is any constant). Then, for any p(s) € Cy(R") we have
Flp(s)Sy(s, 8, 0)1(e) =F[p(x—1)3;*0(aw)] (e, —ab),
where F denotes the Fourier transformation in (t, x).

Take the function a(x) in Lemma 1.3 so that a(x)=0 for |z|<r,
and a(x)=1 for |x|=7,+1 (r, is the constant in Lemma 1.2). It follows
from Lemma 1.3 that

Fp(5)S(s, 6, 0)1(0)=F[p(x6—t)y(D,, D,)o:-*0(aw)l(e, —a6)+0(a|">),
where y(z, &) is a C~ function homogeneous of order 0 satisfying
supp [y]C " (I" is the set in Lemma 1.2) and y(z, £§)=1 in a neighbor-
hood of (1, —6), (—1, 6). Lemma 1.2 implies that

WFp(x6—t)x(D,, D,)3;*O(aw)]l=¢.
Therefore Theorem 2 is obtained.

§ 2. Proof of Theorem 3. It suffices to show that for any small
¢(>0) there exist some C~ function p(s) and a real number m such that
supp [p] C[s,(0)—e, s,(0)+¢]l and (L+|a)™F[p(s)S,(s, 8, w)1(o) ¢ L*(R").
We cannot justify this assertion only by examining WF[w] (w is the
solution of (1.2)).

Let us consider only the case that M,(6) is bounded. Denote by
w(t, ) the solution of (1.2) with the different initial data w(—7, %)
=r(@)w(—7,, 2), 0,(—1r, )=7(x)d,w(—7r, ) on R", where y(x) is a C~
function such that supp[y] is contained in a sufficiently small neighbor-
hood of M,(4) and that y(x)=1 on a neighborhood of M,(6). Let a(x)
be the function in the proof of Theorem 2. Then, if supplp] is small
enough, by Lemma 1.3 we have

Flo(s)S (s, 8, 0)](0) =Flp(x6—t)3;*O(a®)] (e, —a6)+0(a]"™).
Furthermore it is seen that if ¥ is large enough we obtain for any
integer N(=0)

Flo(x6—t)or*O(a)] (e, —ab)
=95[;’ﬁ a(@)o™ = w(t, )|(—00)+0(a| .

=0
Here, 4’ denotes the Fourier transformation in «, ! is an integer
independent of N and supp [e,]C{z: r<|z|<r,+1} (r, is the constant
in Lemma 1.2). Let (q(t; s, x, &), p(t; s, x, &) be the solution of (0.2)
with the different initial data ¢|,_,=x, p|.-.=¢&.
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Lemma 2.1. Let s and t be arbitrary constants in [—r,, t] satis-
fying |s—t|<8. Assume that o(x) is any real-valued C~ function with
o(q(t; s, ¥, ) =0, 3,0(q(t; s, y, 9)=0 and that f(x) be any C~ function
with supplplC{x:|x—q(t;s,y,n)|<e}. Then, if 6 and ¢ are small
enough, there is a real-valued C= function (x) such that (y)=0,
9,0 (y)=0 and that for any integer N (=0)

G'etr@ B (@)W (t, x)1(ap(t; s, ¥, 7))
=exp{ioyn—iop(t; s, v, Pa(t; s, v, P}

xff"'[e“m i 1@ (s, x)]<on)+0(|o|-ﬂ+l),

where 1 is an integer independent of N and y,(x) is a C function such
that lim dis(y, supp [x,1)=0.

s—+0

Take a sufficiently fine partition of unity {8.(x)} on R", and apply
Lemma 2.1 to each F'[a;(x)8(x)W(E, 2)]1(—a6) repeatedly (divide [—y,, £]
into many fine intervals and use Lemma 2.1 on each interval). Then
it is seen that there are C~ functions {y.(x)} and {x,,(¢)} such that

Flo(x0—1)3;* 01 (a)] (o, —o6)=exp{—io(r,+t+5,(0)}o""

x:g’l’g:/[eivww)(go xk,(x)a")w(—’ro, x)](——aco)+0(lal‘””).

We see that if we choose a and p appropriately the above 4, and y,;
satisfy all the assumptions of the following lemma, and therefore
Theorem 3 is obtained.

Lemma 2.2, Assume that {,(2)}i-1, ..., - are real-valued C~ func-
tions on R* such that ¥ (y,)=0, 0,9, (¥,)=0 (y,0= —rozv.l Let y(x) and

e (@}ier,... x belong to Cy(RY amd satisfy y(x)=0, > xx@)=0 and
, J=0,0e0s ¥ i=1

ooy

i oY) 7W)>0.  Then for some m (<1/2) we have
k=1

A+lo)* 3 [ 1@~ )r@)a(—r—a0)|(—ou) ¢ LR,

This lemma is not correct in the case of n=3. Its proof is
similar to that of Theorem 1 in the author [5].

References

[1] P. D. Lax and R. S. Phillips: Scattering Theory. Academic Press, New
York (1967).

[2] ——: Scattering theory for the acoustic equation in an even number of
space dimensions. Indiana Univ. Math. J., 22, 101-134 (1972).

The scattering of sound waves by an obstacle. Comm. Pure Appl.
Math., 30, 195-233 (1977).

[4] A. Majda: A representation formula for the scattering operator and the
inverse problem for arbitrary bodies. ibid., 30, 1656-194 (1977).

[6]1 H. Soga: Oscillatory integrals with degenerate stationary points and their
application to the scattering theory. Comm. in P. D. E., 6, 273-287 (1981).

Singularities of the scattering kernel for convex obstacles (to appear

in J. Math. Kyoto Univ.).

(3]

[6]




