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The purpose of this note is to. show a finiteness theorem for a com-
plex of linear differential operators of infinite order acting on the
sheaf of holo.mo.rphic functions. The complex to be studied arises in
the study o.f 9-zerovalue ([6]), and a detailed study of it is an important
subject for the further development of [6]. A general result for micro-
function solutions will be given in [7].

Let t deno.te a coordinate system on C and let P and Q respectively
denote the matrix of linear differential operators given below:

g 1

[Q= 4z
dt

If we define # and W by expP-1 (==xP/nX) and expQ-1
(:= Q/n ) respectively, then we find ([6])
( 1 ) # and are linear differential operators o infinite order
and
( 2 ) =W#.

For an open subset 9 of C, we denote by K(9)" the complex

) >0(9) >0

deermined by # and W, where 0() deno.es ,he space o.f holomorphie
funeio.ns defined on . Le H(K()") denote is j-h eohomoloffy group.
Then we have he o.11owing

Theorem. Let (e) geote {t C; Im t>e}. T&e

( ) H(K(2(c))") _{C for c>_O

0 for c<O
(ii) H’(K(9(c)) ") - {0 for c >= 0

C for c<O
(iii) H(K(9(c))") =0 for any c.

Proof. Since W is with constant coefficients, W: 0(9)-0(9) is
surjective for any convex open subset tO of C ([4]). Hence (iii) is obvi-
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OUS.

the following equations"

(4)

In order to prove (ii), let us seek for a solutio.n u in ((tg(c)) of

with
( 5 ) f f2,
where f and f. belong to. (C)(tg(c))". Since " ((t9(c))-(C)(9(c)) is sur-
jective, we may suppo.se from the first that f.=0. Then (5) reduces to
(6) f:-0.
By the "Fundamental Principle" type reaso.ning ([1], [2], [3], [4], [5],... )
we can verify that f: has the fo.rm
(7) ce,

where

[exp (4-i ,2t)( 8 ) e [2z, exp(,t)
and c is a complex number satisfying
( 9 ) [c ]<= C, exp (c+)v (v e Z)
with so,me constant C, for every >0. (In what fo.llo.ws, we call this
result "the Fundamental Principle fo.r r,, for short.) Furthermore a
simple calculation shows
(10) exp (nP)e en /
holds for every integer n and v. Therefore, for c0, u=zue is
a well-defined holomorphic solutio.n of (4) on 9(c), if we choose

-0c. (,>0)

(11) u= (=0).

c, (,<0)
#=+I

Note that u given abo.ve satisfies the estimate (9) i c0. This proves
H(K(9(c))’)=O o.r c>=0. In case c0, however, u given abo.ve canno.t
satisfy (9). Actually we can prove that (4) cannot be solved if f, =e0.
In act, if (4) were solvable with f=0, then the Fundamental Prin-
ciple for entails that u should have the form
(12) ue
with u satisfying (9). But, then we should have, again by (10),

(13) u_--uo=l
u_,-=u, (I,l>__l).

Ho.wever, (9) and (13) cannot be consistent o.r c<0. Therefo.re (4)
cannot be so.lved if e0. For generalf ece with c satisfying
(9), let us. define by ez ce,-(ez c)eo and co.nsider the so.lvability
o. (4)o.r (with f=O). No.re that ez c, is convergent by (9) if
c<0. Then, by cho.osing u, so, that
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(14) (u_--Uo= o c,
u_l--u=c

may hold, we find that. u satisfies (9) or c 0. Hence u=ezue thus

defined is a required solution o (4). This means that---]]0"11 and-[f-1
belo,ng to the same cohomology class in H(K(9(c))’). On the other
hand, f-=(ezc)eo holds by the definition o. . Thereto.re
H(K(9(c)) ") C holds o,r c 0.

By combining (10) and the Fundamental Principle for , we can
prove (i) in the same way. Q.E.D.

Remark. Although we have presented he result or global solu-
tions, we can also. prove the ollowing local statement"

Let K denote the complex

(,)(15) 0 ,t -c, >, 0,
where Gc, denotes the germ of the sheaf Gc at t. Then we have

C if Im t0( ) H(K;)
0 ifImt0
0 if Im t0(ii) H(K)
C ifImt0

and
(iii) H2(K)-O for every t.
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