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By making use of the B-spline Q,,..(%):
m+1
Qi@ =/mH3 (" F Ha—oz

where
Ay (x—D™ for >4
(@—) {0 for x<i,

we consider a quartic spline s(x) of the form:
n-1

s(x)= _24 a,Q(x | h—1), nh=1.

Then the following short term consistency relation has been obtained
by Usmani ([6]):
(%) (31+1—2Sz+St_1)=(h2/12)(8§'+1+103§'+ 8411
where s,=s(ith) and s/ =s"(ith). The above relation has been general-
ized for even degree polynomial splines ([8]). For odd degree polyno-
mial splines, we also have short term consistency relations at mid-points
([4D. For example, let s(x) be a cubic, then
(**) (Sz +s/2—231+1/2+sz-1/2) = (h2/24)(3£/+3/2+223211/2"{'32/—1/2)
where s;.,,,=8((i+1/2)h) and s7,,,=s"((C+1/2)h).

In the present paper we shall generalize the above relations (x)
and (xx) for doubly polynomial splines.

Let s(z, ) be a polynomial spline of the form:

n—1
s(zx, y)zi j; O(i,ij+1(x/h—i)Qm+1(?//h—j)'
Then we have

Theorem 1. If m is even and k,1 (<m—2) are also even, we have
m=2 m=2
iéj‘:o C,(;{c}l)sz,j=hk+l i;:‘o 01(:?30)8,(;{0}1)
where
ak+l . .
sy’ = satay s(ih, 7h)
o ={QE(m—1) — QI (m—i+ 1)+ - - -}
X{QP (m—N—Q(m—j+D+-- -}
Proof. The following m’-term consistency relation holds:
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1

(E) > QL m— QM= )8 ires
iJ=
m—1
= 5 Qua(m—0)Qui(m—)sgit,., (1D,
=
Since

Qp:1(2)=0 for <0, >m-+1
Qm +1(x)EQm+1(m+1_ x)’
for i>m—1;
P =(=1) " Q. (D—- QW)+ - - - —QFh (m)}
X{QW(m—N—QP, (m—j+1D+- -}
=0 for even £k,
for j>m—1;
cP=0 for even .
Hence, an alternating sum obtained by
(i) writing down equation (E) with (p,r)=(0,0), substracting
equation (E) with (p, r)=(1, 0), adding equation (E) with (p, ) =(2, 0)
and so on,
(ii) substracting equation (E) with (p, r)=(0, 1), adding equation
(E) with (p,7)=(1,1) and so on,
(iii) continuating these processes,
is equal to the short term consistency relation.
As an example of the above relation, let s be a doubly quartic
spline, then
(1/24){si+1,j+1+si+1,j—l+si—l,j+1+st-l,j—1
48011, 80,5017 80,51 Si-1,) — 208, 1}
=(h/24) {481,501 AS; 41,1+ A8 1,50+ A84 1,54
+10(ds; 4y, 54 484,501+ 484, 51+ 48,1, )+ 1004s, ;}.
This relation is useful for the numerical solution of a boundary value
problem du = f and the discretization error of this nine-point difference
scheme is O(R%) ([2]).
If m is odd, we have the following
Theorem 2. If m is odd and k,l (<m—1) are even, we have the
short term consistency relation at mid-points:

m=1 m—=1
'R __hk+l 0,0) o (K,

iZO dé,j )sz+1/2,;+1/2—h * i;o d;,j )3§+1/)2,1+1/2

W= yJ=

where
ak+l . .
®D 1= ——8 1/2)h, 1/2)h
S:31/2,5+1/2 a5y G+ / Yo, (7+ / )
a5 ={QULM+1/2—)— Q. (m+8/2— )+ - - -}
K [QY(Mm+1/2— ) — Q. (m+3/2— )+ - - -).
Let s be a doubly cubic spline. Then from above we have
(1/48){31 va2, 3432t Sivs, 1-12F Sic1se, srapt Sic1, s-122
+10(si+3/§ +1/2+si+l/2,j+3/2+st+l/2,j-1/2+81—1/2,14—1/2)_448i+1/2,j+1/2}
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=(h/48) {48, ap0, s+t ASiispe, -1+ A8;_1p, st A8;_1p0,5-1p0
+ 22(Asi+8/2,j+1/2+ ds, w1729+ ds, 12,012 4s, —1/2,j+1/2)
+4844s, +1/2,j+1/2}'
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