27. On the Structure of Cohomology Groups attached to the Integral of Certain Many-Valued Analytic Functions

By Michitake KITA*) and Masatoshi NOUMI**)
(Communicated by Kôsaku Yosida, M. J. A., March 12, 1982)

O. Introduction. The present note is a brief summary of our forthcoming paper [7].

Let P_j $(1 \le j \le m)$ be non-zero polynomials in n complex variables $z = (z_1, \cdots, z_n)$ and A_j $(1 \le j \le m)$ be linear mappings of a finite dimensional complex vector space V. We consider the connection form $\omega = \sum_{j=1}^m A_j (dP_j/P_j)$ which satisfies the integrability condition $\omega \wedge \omega = 0$. Let D_j be the divisor of \mathbb{C}^n defined by P_j for $1 \le j \le m$ and D be the divisor defined by the product $P = P_1 \cdots P_m$. We denote by $\Omega_{X^{an}}^n$ the sheaf of germs of holomorphic p-forms on the complex manifold $X = \mathbb{C}^n - D$. Then the 1-form ω determines an integrable connection V_m on $\Omega_{X^{an}}^n \otimes V$ as follows:

$$\nabla_{\omega}\varphi := d\varphi + \omega \wedge \varphi$$

for each local section φ of $\Omega^p_{X^{an}} \otimes V$. We denote by S_ω the complex local system on X defined by the local horizontal sections of V_ω . Let $\Omega^p(*D)$ be the set of $rational\ p$ -forms which are holomorphic on X; then we denote by $(\Omega'(*D) \otimes V, V_\omega)$ the complex

$$0 \longrightarrow \Omega^{0}(*D) \otimes V \xrightarrow{\overline{V}_{\omega}} \Omega^{1}(*D) \otimes V \xrightarrow{\overline{V}_{\omega}} \cdots \xrightarrow{\overline{V}_{\omega}} \Omega^{n}(*D) \otimes V \longrightarrow 0.$$

Since X is affine, by the comparison theorem of Grothendieck and Deligne we have isomorphisms

$$H^p(X, \mathcal{S}_\omega) \xrightarrow{\sim} H^p(\Omega^{\cdot}(*D) \otimes V, \mathcal{V}_\omega) \quad \text{for} \quad 0 \leq p \leq n.$$

After K. Aomoto, we call the complex $(\Omega^{\cdot}(*D)\otimes V, V_{\omega})$ the twisted rational de Rham complex.

In the present note, we discuss the vanishing theorems for the twisted rational de Rham cohomology groups $H^p(\Omega^{\cdot}(*D)\otimes V, \mathcal{V}_{\omega})$ under certain algebraic conditions on the divisors D_j $(1\leq j\leq m)$ and on the residue matrices A_j $(1\leq j\leq m)$. This type of studies of cohomology groups of \mathbb{C}^n-D with coefficients in local systems has been made by K. Aomoto from the viewpoint of differential equations ([1]-[4]) and by A. Hattori and T. Kimura from the topological point of view ([5] and [6]). We extend the results of the papers cited above to complex

^{*} College of Liberal Arts, Kanazawa University.

^{**} Department of Mathematics, Sophia University.

local systems S_{ω} of any rank and to larger classes of divisors than those defined by linear polynomials. As an application of our method, we can give a complete description of the cohomology group $H^n(\Omega^{\cdot}(*D) \otimes V, \mathcal{V}_{\omega})$ in the case where D_j $(1 \leq j \leq m, m \geq n+1)$ are hyperplanes in general position, which gives a positive answer to the conjecture proposed by K. Aomoto [1].

1. After K. Saito [8], we say that a rational p-form ψ in $\Omega^p(*D)$ is generically logarithmic along D if $P\psi$ and $Pd\psi$ are polynomial forms. We denote by $\Omega^p(\log D)$ the set of rational p-forms generically logarithmic along D. Let $D = \{D_j | 1 \le j \le m\}$; then a rational p-form ψ in $\Omega^p(*D)$ is said to be logarithmic with respect to D if it can be written in the form

$$\psi = \sum_{\nu=0}^{N} \sum_{1 \leq j_1 < \dots < j_{\nu} \leq m} \frac{dP_{j_1}}{P_{j_1}} \wedge \dots \wedge \frac{dP_{j_{\nu}}}{P_{j_{\nu}}} \wedge \psi_{j_1 \dots j_{\nu}}$$

where $N=\min(m,p)$ and each $\psi_{j_1...j_p}$ is a polynomial $(p-\nu)$ -form for $1 \le j_1 < \cdots < j_{\nu} \le m$. We denote by $\Omega^p \langle \mathbf{D} \rangle$ the set of rational p-forms logarithmic with respect to \mathbf{D} . We remark that $\Omega^p \langle \mathbf{D} \rangle$ is contained in $\Omega^p(\log D)$ for $0 \le p \le n$.

Let C[z] be the polynomial ring of n variables $z=(z_1,\dots,z_n)$ over C. For a sequence Q_1,\dots,Q_r of polynomials in C[z], we denote by $(dQ_1\wedge\dots\wedge dQ_r,\,Q_1,\,\dots,Q_r)$ the ideal of C[z] generated by $Q_1,\,\dots,Q_r$ and the minors of size r of the Jacobian matrix $(\partial Q_k/\partial z_i)$ $(1\leq k\leq r,\,1\leq i\leq n)$. Recall that a sequence $Q_1,\,\dots,\,Q_s$ of elements of C[z] is said to be regular if each Q_k $(1\leq k\leq s)$ satisfies the following condition: If F is an element of C[z] such that Q_kF is in the ideal $(Q_1,\,\dots,\,Q_{k-1})$, then F itself belongs to $(Q_1,\,\dots,\,Q_{k-1})$.

Let q be an integer with $1 \le q \le n+1$. Then we say that a set $\{P_j | 1 \le j \le m\}$ of polynomials in $\mathbb{C}[z]$ satisfies the condition $\mathbb{C}(q)$ if the following holds: (1) The height of the ideal $(dQ_1 \land \cdots \land dQ_r, Q_1, \cdots, Q_r)$ is not less than q for any r polynomials Q_1, \cdots, Q_r of $\{P_j | 1 \le j \le m\}$ where $1 \le r \le \min(m, q-1)$. (2) Q_1, \cdots, Q_s form a regular sequence for any s polynomials Q_1, \cdots, Q_s of $\{P_j | 1 \le j \le m\}$ where $1 \le s \le \min(m, q)$. For convenience, we define the height of the ideal $\mathbb{C}[z]$ to be n+1.

We remark that both $\Omega^{\cdot}\langle D\rangle$ and $\Omega^{\cdot}(\log D)$ are closed under the exterior differentiation and the exterior product with the 1-form $dP_{\scriptscriptstyle J}/P_{\scriptscriptstyle J}$ for $1{\le}j{\le}m$; hence we have two logarithmic subcomplexes $(\Omega^{\cdot}\langle D\rangle\otimes V, \mathcal{F}_{\scriptscriptstyle \omega})$ and $(\Omega^{\cdot}(\log D){\otimes}V, \mathcal{F}_{\scriptscriptstyle \omega})$ of the twisted rational de Rham complex $(\Omega^{\cdot}({*D}){\otimes}V, \mathcal{F}_{\scriptscriptstyle \omega})$. Then we have

Theorem 1. Suppose that the eigenvalues of the residue matrices A_j ($1 \le j \le m$) are different from positive integers.

(i) If the set $\{P_j | 1 \le j \le m\}$ of polynomials satisfies the condition C(q) for an integer q with $1 \le q \le n$, then we have natural isomorphisms

 $H^p(\Omega \subset D) \otimes V, V_{\omega} \longrightarrow H^p(\Omega \subset D) \otimes V, V_{\omega} \quad for \quad 0 \leq p \leq q-2.$

(ii) If the set $\{P_j | 1 \le j \le m\}$ of polynomials satisfies the condition C(n+1), then we have natural isomorphisms

$$H^p(\Omega \cdot \langle D \rangle \otimes V, V_\omega) \xrightarrow{\sim} H^p(\Omega \cdot (*D) \otimes V, V_\omega) \quad for \quad 0 \leq p \leq n.$$

- 2. We fix an *n*-tuple $\rho = (\rho_1, \dots, \rho_n) \neq (0, \dots, 0)$ of non-negative integers. Then the ρ -degree of a monomial $z_1^{\alpha_1} \cdots z_n^{\alpha_n}$ is defined as the sum $\mu = \sum_{i=1}^n \rho_i \alpha_i$. A linear combination of monomials of ρ -degree μ over \mathbf{C} is called a weighted homogeneous polynomial of weight ρ of ρ -degree μ .
- Let P_j $(1 \le j \le m)$ be non-zero polynomials in $\mathbb{C}[z]$ which are linear combinations of monomials of ρ -degree at most l_j . We denote by \overline{P}_j the weighted homogeneous part of P_j of ρ -degree l_j and suppose that each \overline{P}_j is not zero for $1 \le j \le m$. Then we have
- Theorem 2. Let q be an integer with $1 \le q \le n$ and suppose that the set $\{\bar{P}_j | 1 \le j \le m\}$ of weighted homogeneous polynomials satisfies the condition C(q). Then the following holds:
- (i) Let $l=\sum_{j=1}^m l_j$. If the eigenvalues of the linear mapping $\sum_{j=1}^m l_j A_j$ of V are different from the integers $l, l-1, l-2, \cdots$, then the cohomology groups $H^p(\Omega^{\cdot}(\log D) \otimes V, V_{\omega})$ vanish for $0 \leq p < q$.
- (ii) If the eigenvalues of the linear mapping $\sum_{j=1}^{m} l_j A_j$ of V are different from non-positive integers $0, -1, -2, \cdots$, then the cohomology groups $H^p(\Omega' \langle \mathbf{D} \rangle \otimes V, V_w)$ vanish for $0 \leq p < q$.
- 3. Remarking that $\Omega'(*D) \otimes V$ is the union of $P^{-k}\Omega'(\log D) \otimes V$ $(k=1,2,\cdots)$, we have

$$H^p(\Omega^{\cdot}(*D)\otimes V, V_{\omega}) = \text{ind. } \lim H^p(P^{-k}\Omega^{\cdot}(\log D)\otimes V, V_{\omega})$$

for $0 \le p \le n$. On the other hand, the subcomplex $(P^{-k}\Omega'(\log D) \otimes V, \mathcal{F}_{\omega})$ is isomorphic to the complex $(\Omega'(\log D) \otimes V, \mathcal{F}_{\omega(k)})$ where $\omega(k)$ is the connection form $\sum_{j=1}^{m} (A_j - k \cdot id_{\mathcal{V}}) (dP_j/P_j)$. Then combining Theorem 2 with the above remarks, we obtain

Main theorem. Let q be an integer with $1 \le q \le n$. Suppose that the set $\{\overline{P}_j | 1 \le j \le m\}$ of weighted homogeneous polynomials satisfies the condition C(q). If the eigenvalues of the linear mapping $\sum_{j=1}^m l_j A_j$ of V are different from rational integers, then the twisted rational de Rham cohomology groups $H^p(X, \mathcal{S}_\omega) = H^p(\Omega^*(*D) \otimes V, \mathcal{F}_\omega)$ vanish for $0 \le p < q$.

In the case where D_j $(1 \le j \le m, m \ge n+1)$ are hyperplanes in general position, we can determine the *n*-th cohomology group.

Theorem 3. Let $m \ge n+1$ and let P_j $(1 \le j \le m)$ be linear polynomials such that the hyperplanes D_j $(1 \le j \le m)$ are in general position. If the eigenvalues of the linear mapping $\sum_{j=1}^m A_j$ of V are different from non-positive integers and those of each A_j $(1 \le j \le m)$ different from positive integers, then we have

 $H^p(X, \mathcal{S}_n) = H^p(\Omega^{\cdot}(*D) \otimes V, \mathcal{V}_n) = 0$ for 0 .

Moreover, the n-th cohomology group $H^n(X, S_\omega) = H^n(\Omega^*(*D) \otimes V, V_\omega)$ is given by

$$G_0(\Omega^n \langle \mathbf{D} \rangle \otimes V)/\omega \wedge G_0(\Omega^{n-1} \langle \mathbf{D} \rangle \otimes V)$$

where $G_0(\Omega^p \langle D \rangle \otimes V)$ is the complex vector space which consists of all linear combinations of $dP_{j_1}/P_{j_1} \wedge \cdots \wedge dP_{j_p}/P_{j_p} \ (1 \leq j_1 < \cdots < j_p \leq m)$ with coefficients in V.

Theorem 3 gives a positive answer to the conjecture proposed by K. Aomoto [1].

References

- [1] K. Aomoto: Un théorème du type Matsushima-Murakami concernant l'intégrale des fonction multiformes. J. Math. Pures Appl., 52, 1-11 (1973).
- [1] —: Vanishing of cohomology attached to certain many valued meromorphic functions. J. Math. Soc. Japan, 27, 248-255 (1975).
- [3] —: Les équations aux différences linéaires et les intégrales des fonctions multiformes. J. Fac. Sci. Univ. Tokyo, Sec. IA, 22, 271-297 (1975); Une correction et un complément à l'article "Les équations aux différences . . .". ibid., 26, 519-523 (1979).
- [4] —: Les intégrales des fonctions multiformes (I) (unpublished).
- [5] A. Hattori and T. Kimura: On the Euler integral representations of hypergeometric functions in several variables. J. Math. Soc. Japan, 26, 1-16 (1974).
- [6] A. Hattori: Topology of Cⁿ minus a finite number of affine hyperplanes in general position. J. Fac. Sci. Univ. Tokyo, Sec. IA, 22, 205-219 (1975).
- [7] M. Kita and M. Noumi: On the structure of cohomology groups attached to the integral of certain many-valued analytic functions (to appear).
- [8] K. Saito: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo, Sec. IA, 27, 285-291 (1980).